250 research outputs found

    An Iterative Model Reduction Scheme for Quadratic-Bilinear Descriptor Systems with an Application to Navier-Stokes Equations

    Full text link
    We discuss model reduction for a particular class of quadratic-bilinear (QB) descriptor systems. The main goal of this article is to extend the recently studied interpolation-based optimal model reduction framework for QBODEs [Benner et al. '16] to a class of descriptor systems in an efficient and reliable way. Recently, it has been shown in the case of linear or bilinear systems that a direct extension of interpolation-based model reduction techniques to descriptor systems, without any modifications, may lead to poor reduced-order systems. Therefore, for the analysis, we aim at transforming the considered QB descriptor system into an equivalent QBODE system by means of projectors for which standard model reduction techniques for QBODEs can be employed, including aforementioned interpolation scheme. Subsequently, we discuss related computational issues, thus resulting in a modified algorithm that allows us to construct \emph{near}--optimal reduced-order systems without explicitly computing the projectors used in the analysis. The efficiency of the proposed algorithm is illustrated by means of a numerical example, obtained via semi-discretization of the Navier-Stokes equations

    Structure-Preserving Model Reduction for Mechanical Systems

    Get PDF

    System- and Data-Driven Methods and Algorithms

    Get PDF
    An increasing complexity of models used to predict real-world systems leads to the need for algorithms to replace complex models with far simpler ones, while preserving the accuracy of the predictions. This two-volume handbook covers methods as well as applications. This first volume focuses on real-time control theory, data assimilation, real-time visualization, high-dimensional state spaces and interaction of different reduction techniques
    corecore