10,077 research outputs found

    Energy Efficient Ant Colony Algorithms for Data Aggregation in Wireless Sensor Networks

    Get PDF
    In this paper, a family of ant colony algorithms called DAACA for data aggregation has been presented which contains three phases: the initialization, packet transmission and operations on pheromones. After initialization, each node estimates the remaining energy and the amount of pheromones to compute the probabilities used for dynamically selecting the next hop. After certain rounds of transmissions, the pheromones adjustment is performed periodically, which combines the advantages of both global and local pheromones adjustment for evaporating or depositing pheromones. Four different pheromones adjustment strategies are designed to achieve the global optimal network lifetime, namely Basic-DAACA, ES-DAACA, MM-DAACA and ACS-DAACA. Compared with some other data aggregation algorithms, DAACA shows higher superiority on average degree of nodes, energy efficiency, prolonging the network lifetime, computation complexity and success ratio of one hop transmission. At last we analyze the characteristic of DAACA in the aspects of robustness, fault tolerance and scalability.Comment: To appear in Journal of Computer and System Science

    From carbon nanotubes and silicate layers to graphene platelets for polymer nanocomposites

    Get PDF
    In spite of extensive studies conducted on carbon nanotubes and silicate layers for their polymer-based nanocomposites, the rise of graphene now provides a more promising candidate due to its exceptionally high mechanical performance and electrical and thermal conductivities. The present study developed a facile approach to fabricate epoxy–graphene nanocomposites by thermally expanding a commercial product followed by ultrasonication and solution-compounding with epoxy, and investigated their morphologies, mechanical properties, electrical conductivity and thermal mechanical behaviour. Graphene platelets (GnPs) of 3.5

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Multihop clustering algorithm for load balancing in wireless sensor networks

    Get PDF
    The paper presents a new cluster based routing algorithm that exploits the redundancy properties of the sensor networks in order to address the traditional problem of load balancing and energy efficiency in the WSNs.The algorithm makes use of the nodes in a sensor network of which area coverage is covered by the neighbours of the nodes and mark them as temporary cluster heads. The algorithm then forms two layers of multi hop communication. The bottom layer which involves intra cluster communication and the top layer which involves inter cluster communication involving the temporary cluster heads. Performance studies indicate that the proposed algorithm solves effectively the problem of load balancing and is also more efficient in terms of energy consumption from Leach and the enhanced version of Leach
    • …
    corecore