84 research outputs found

    Rotation symmetric Boolean functions---count and cryptographic properties

    Get PDF
    The article of record as published may be located at http://dx.doi.org/10.1.1.137.6388Rotation symmetric (RotS) Boolean functions have been used as components of different cryptosystems. This class of Boolean functions are invariant under circular translation of indices. Using Burnsideï¾’s lemma it can be seen that the number of n-variable rotation symmetric Boolean functions is 2gn, where gn = 1 nPt|n (t) 2n t , and (.) is the Euler phi-function. In this paper, we find the number of short and long cycles of elements in Fn2 having fixed weight, under the RotS action. As a consequence we obtain the number of homogeneous RotS functions having algebraic degree w. Our results make the search space of RotS functions much reduced and we successfully analyzed important cryptographic properties of such functions by executing computer programs. We study RotS bent functions up to 10 variables and observe (experimentally) that there is no homogeneous rotation symmetric bent function having degree > 2. Further, we studied the RotS functions on 5, 6, 7 variables by computer search for correlation immunity and propagation characteristics and found some functions with very good cryptographic properties which were not known earlier

    1-Resilient Boolean Functions on Even Variables with Almost Perfect Algebraic Immunity

    Get PDF
    Several factors (e.g., balancedness, good correlation immunity) are considered as important properties of Boolean functions for using in cryptographic primitives. A Boolean function is perfect algebraic immune if it is with perfect immunity against algebraic and fast algebraic attacks. There is an increasing interest in construction of Boolean function that is perfect algebraic immune combined with other characteristics, like resiliency. A resilient function is a balanced correlation-immune function. This paper uses bivariate representation of Boolean function and theory of finite field to construct a generalized and new class of Boolean functions on even variables by extending the Carlet-Feng functions. We show that the functions generated by this construction support cryptographic properties of 1-resiliency and (sub)optimal algebraic immunity and further propose the sufficient condition of achieving optimal algebraic immunity. Compared experimentally with Carlet-Feng functions and the functions constructed by the method of first-order concatenation existing in the literature on even (from 6 to 16) variables, these functions have better immunity against fast algebraic attacks. Implementation results also show that they are almost perfect algebraic immune functions

    Ongoing Research Areas in Symmetric Cryptography

    Get PDF
    This report is a deliverable for the ECRYPT European network of excellence in cryptology. It gives a brief summary of some of the research trends in symmetric cryptography at the time of writing. The following aspects of symmetric cryptography are investigated in this report: • the status of work with regards to different types of symmetric algorithms, including block ciphers, stream ciphers, hash functions and MAC algorithms (Section 1); • the recently proposed algebraic attacks on symmetric primitives (Section 2); • the design criteria for symmetric ciphers (Section 3); • the provable properties of symmetric primitives (Section 4); • the major industrial needs in the area of symmetric cryptography (Section 5)

    D.STVL.9 - Ongoing Research Areas in Symmetric Cryptography

    Get PDF
    This report gives a brief summary of some of the research trends in symmetric cryptography at the time of writing (2008). The following aspects of symmetric cryptography are investigated in this report: • the status of work with regards to different types of symmetric algorithms, including block ciphers, stream ciphers, hash functions and MAC algorithms (Section 1); • the algebraic attacks on symmetric primitives (Section 2); • the design criteria for symmetric ciphers (Section 3); • the provable properties of symmetric primitives (Section 4); • the major industrial needs in the area of symmetric cryptography (Section 5)

    Some Words on Cryptanalysis of Stream Ciphers

    Get PDF
    In the world of cryptography, stream ciphers are known as primitives used to ensure privacy over a communication channel. One common way to build a stream cipher is to use a keystream generator to produce a pseudo-random sequence of symbols. In such algorithms, the ciphertext is the sum of the keystream and the plaintext, resembling the one-time pad principal. Although the idea behind stream ciphers is simple, serious investigation of these primitives has started only in the late 20th century. Therefore, cryptanalysis and design of stream ciphers are important. In recent years, many designs of stream ciphers have been proposed in an effort to find a proper candidate to be chosen as a world standard for data encryption. That potential candidate should be proven good by time and by the results of cryptanalysis. Different methods of analysis, in fact, explain how a stream cipher should be constructed. Thus, techniques for cryptanalysis are also important. This thesis starts with an overview of cryptography in general, and introduces the reader to modern cryptography. Later, we focus on basic principles of design and analysis of stream ciphers. Since statistical methods are the most important cryptanalysis techniques, they will be described in detail. The practice of statistical methods reveals several bottlenecks when implementing various analysis algorithms. For example, a common property of a cipher to produce n-bit words instead of just bits makes it more natural to perform a multidimensional analysis of such a design. However, in practice, one often has to truncate the words simply because the tools needed for analysis are missing. We propose a set of algorithms and data structures for multidimensional cryptanalysis when distributions over a large probability space have to be constructed. This thesis also includes results of cryptanalysis for various cryptographic primitives, such as A5/1, Grain, SNOW 2.0, Scream, Dragon, VMPC, RC4, and RC4A. Most of these results were achieved with the help of intensive use of the proposed tools for cryptanalysis

    Secure Block Ciphers - Cryptanalysis and Design

    Get PDF

    Contributions to Confidentiality and Integrity Algorithms for 5G

    Get PDF
    The confidentiality and integrity algorithms in cellular networks protect the transmission of user and signaling data over the air between users and the network, e.g., the base stations. There are three standardised cryptographic suites for confidentiality and integrity protection in 4G, which are based on the AES, SNOW 3G, and ZUC primitives, respectively. These primitives are used for providing a 128-bit security level and are usually implemented in hardware, e.g., using IP (intellectual property) cores, thus can be quite efficient. When we come to 5G, the innovative network architecture and high-performance demands pose new challenges to security. For the confidentiality and integrity protection, there are some new requirements on the underlying cryptographic algorithms. Specifically, these algorithms should: 1) provide 256 bits of security to protect against attackers equipped with quantum computing capabilities; and 2) provide at least 20 Gbps (Gigabits per second) speed in pure software environments, which is the downlink peak data rate in 5G. The reason for considering software environments is that the encryption in 5G will likely be moved to the cloud and implemented in software. Therefore, it is crucial to investigate existing algorithms in 4G, checking if they can satisfy the 5G requirements in terms of security and speed, and possibly propose new dedicated algorithms targeting these goals. This is the motivation of this thesis, which focuses on the confidentiality and integrity algorithms for 5G. The results can be summarised as follows.1. We investigate the security of SNOW 3G under 256-bit keys and propose two linear attacks against it with complexities 2172 and 2177, respectively. These cryptanalysis results indicate that SNOW 3G cannot provide the full 256-bit security level. 2. We design some spectral tools for linear cryptanalysis and apply these tools to investigate the security of ZUC-256, the 256-bit version of ZUC. We propose a distinguishing attack against ZUC-256 with complexity 2236, which is 220 faster than exhaustive key search. 3. We design a new stream cipher called SNOW-V in response to the new requirements for 5G confidentiality and integrity protection, in terms of security and speed. SNOW-V can provide a 256-bit security level and achieve a speed as high as 58 Gbps in software based on our extensive evaluation. The cipher is currently under evaluation in ETSI SAGE (Security Algorithms Group of Experts) as a promising candidate for 5G confidentiality and integrity algorithms. 4. We perform deeper cryptanalysis of SNOW-V to ensure that two common cryptanalysis techniques, guess-and-determine attacks and linear cryptanalysis, do not apply to SNOW-V faster than exhaustive key search. 5. We introduce two minor modifications in SNOW-V and propose an extreme performance variant, called SNOW-Vi, in response to the feedback about SNOW-V that some use cases are not fully covered. SNOW-Vi covers more use cases, especially some platforms with less capabilities. The speeds in software are increased by 50% in average over SNOW-V and can be up to 92 Gbps.Besides these works on 5G confidentiality and integrity algorithms, the thesis is also devoted to local pseudorandom generators (PRGs). 6. We investigate the security of local PRGs and propose two attacks against some constructions instantiated on the P5 predicate. The attacks improve existing results with a large gap and narrow down the secure parameter regime. We also extend the attacks to other local PRGs instantiated on general XOR-AND and XOR-MAJ predicates and provide some insight in the choice of safe parameters

    Cryptanalysis, Reverse-Engineering and Design of Symmetric Cryptographic Algorithms

    Get PDF
    In this thesis, I present the research I did with my co-authors on several aspects of symmetric cryptography from May 2013 to December 2016, that is, when I was a PhD student at the university of Luxembourg under the supervision of Alex Biryukov. My research has spanned three different areas of symmetric cryptography. In Part I of this thesis, I present my work on lightweight cryptography. This field of study investigates the cryptographic algorithms that are suitable for very constrained devices with little computing power such as RFID tags and small embedded processors such as those used in sensor networks. Many such algorithms have been proposed recently, as evidenced by the survey I co-authored on this topic. I present this survey along with attacks against three of those algorithms, namely GLUON, PRINCE and TWINE. I also introduce a new lightweight block cipher called SPARX which was designed using a new method to justify its security: the Long Trail Strategy. Part II is devoted to S-Box reverse-engineering, a field of study investigating the methods recovering the hidden structure or the design criteria used to build an S-Box. I co-invented several such methods: a statistical analysis of the differential and linear properties which was applied successfully to the S-Box of the NSA block cipher Skipjack, a structural attack against Feistel networks called the yoyo game and the TU-decomposition. This last technique allowed us to decompose the S-Box of the last Russian standard block cipher and hash function as well as the only known solution to the APN problem, a long-standing open question in mathematics. Finally, Part III presents a unifying view of several fields of symmetric cryptography by interpreting them as purposefully hard. Indeed, several cryptographic algorithms are designed so as to maximize the code size, RAM consumption or time taken by their implementations. By providing a unique framework describing all such design goals, we could design modes of operations for building any symmetric primitive with any form of hardness by combining secure cryptographic building blocks with simple functions with the desired form of hardness called plugs. Alex Biryukov and I also showed that it is possible to build plugs with an asymmetric hardness whereby the knowledge of a secret key allows the privileged user to bypass the hardness of the primitive

    Proceedings of AUTOMATA 2010: 16th International workshop on cellular automata and discrete complex systems

    Get PDF
    International audienceThese local proceedings hold the papers of two catgeories: (a) Short, non-reviewed papers (b) Full paper
    • …
    corecore