26 research outputs found

    Center of Pressure Feedback for Controlling the Walking Stability Bipedal Robots using Fuzzy Logic Controller

    Get PDF
    This paper presents a sensor-based stability walk for bipedal robots by using force sensitive resistor (FSR) sensor. To perform walk stability on uneven terrain conditions, FSR sensor is used as feedbacks to evaluate the stability of bipedal robot instead of the center of pressure (CoP). In this work, CoP that was generated from four FSR sensors placed on each foot-pad is used to evaluate the walking stability. The robot CoP position provided an indication of walk stability. The CoP position information was further evaluated with a fuzzy logic controller (FLC) to generate appropriate offset angles to be applied to meet a stable situation. Moreover, in this paper designed a FLC through CoP region's stability and stable compliance control are introduced. Finally, the performances of the proposed methods were verified with 18-degrees of freedom (DOF) kid-size bipedal robot

    Development of a Locomotion and Balancing Strategy for Humanoid Robots

    Get PDF
    The locomotion ability and high mobility are the most distinguished features of humanoid robots. Due to the non-linear dynamics of walking, developing and controlling the locomotion of humanoid robots is a challenging task. In this thesis, we study and develop a walking engine for the humanoid robot, NAO, which is the official robotic platform used in the RoboCup Spl. Aldebaran Robotics, the manufacturing company of NAO provides a walking module that has disadvantages, such as being a black box that does not provide control of the gait as well as the robot walk with a bent knee. The latter disadvantage, makes the gait unnatural, energy inefficient and exert large amounts of torque to the knee joint. Thus creating a walking engine that produces a quality and natural gait is essential for humanoid robots in general and is a factor for succeeding in RoboCup competition. Humanoids robots are required to walk fast to be practical for various life tasks. However, its complex structure makes it prone to falling during fast locomotion. On the same hand, the robots are expected to work in constantly changing environments alongside humans and robots, which increase the chance of collisions. Several human-inspired recovery strategies have been studied and adopted to humanoid robots in order to face unexpected and avoidable perturbations. These strategies include hip, ankle, and stepping, however, the use of the arms as a recovery strategy did not enjoy as much attention. The arms can be employed in different motions for fall prevention. The arm rotation strategy can be employed to control the angular momentum of the body and help to regain balance. In this master\u27s thesis, I developed a detailed study of different ways in which the arms can be used to enhance the balance recovery of the NAO humanoid robot while stationary and during locomotion. I model the robot as a linear inverted pendulum plus a flywheel to account for the angular momentum change at the CoM. I considered the role of the arms in changing the body\u27s moment of inertia which help to prevent the robot from falling or to decrease the falling impact. I propose a control algorithm that integrates the arm rotation strategy with the on-board sensors of the NAO. Additionally, I present a simple method to control the amount of recovery from rotating the arms. I also discuss the limitation of the strategy and how it can have a negative impact if it was misused. I present simulations to evaluate the approach in keeping the robot stable against various disturbance sources. The results show the success of the approach in keeping the NAO stable against various perturbations. Finally,I adopt the arm rotation to stabilize the ball kick, which is a common reason for falling in the soccer humanoid RoboCup competitions

    Design of a Walking Assistance Lower Limb Exoskeleton for Paraplegic Patients and Hardware Validation Using CoP

    Get PDF
    The  design  of  an  assistive  lower  limb exoskeleton  robot  for  paraplegic  patients  that  can measure the centre of pressure is presented. In contrast with most biped walking robots, the centre of pressure (CoP)  or  zero  moment  point  (ZMP)  has  not  been actively used in the operation of exoskeleton robots. In order to  measure  CoP  in  our  exoskeleton robot, two kinds  of  force  sensor  units  are  installed  in  the exoskeleton: low profile force sensors in foot modules to  measure  the  human  weight  transferred  to  the ground and a load cell at the shank frame to measure the supporting force. The CoP of the exoskeleton robot  is  calculated  from  the  above  force  sensors,  an inclinometer at the waist, and the positions of 14 DOF exoskeleton  joints  with  an  algorithm  to  change  the fixed pivot using a foot contact sensor. Experiments on an  able‐bodied  person  wearing  the  designed exoskeleton and walking on the ground are performed to  validate  the  designed  hardware  system.  Through the  experiments,  the  trajectory  of  the  CoP  of  he exoskeleton with a wearer are calculated based on the proposed algorithm and it is compared with the value measured  by  a  commercial  pressure  measurement system.ope

    Stable locomotion of humanoid robots based on mass concentrated model

    Get PDF
    El estudio de la locomoción de robots humanoides es actualmente un área muy activa, en el campo de la robótica. Partiendo del principio que el hombre esta construyendo robots para trabajar juntos cooperando en ambientes humanos. La estabilidad durante la caminata es un factor crítico que prevee la caída del robot, la cual puede causar deterioros al mismo y a las personas en su entorno. De esta manera, el presente trabajo pretende resolver una parte del problema de la locomoción bípeda, esto es los métodos empleados para “La generación del paso” (“Gait generation”) y asi obtener la caminata estable. Para obtener una marcha estable se utilizan modelos de masa concentrada. De esta manera el modelo del “pendulo invertido simple” y el modelo del “carro sobre la mesa” se han utilizado para conseguir la marcha estable de robots humanoides. En el modelo del pendulo invertido, la masa el pendulo conduce el movimiento del centro de gravedad (CDG) del robot humanoide durante la marcha. Se detallara que el CDG se mueve como una bola libre sobre un plano bajo las leyes del pendulo en el campo de gravedad. Mientras que en el modelo del “carro sobre la mesa”, el carro conduce el movimiento del CDG durante la marcha. En este caso, el movimiento del carro es tratado como un sistema servocontrolado, y el movimiento del CDG es obtenido con los actuales y futuros estados de referencia del Zero Moment Point (ZMP). El método para generar el paso propuesto esta compuesto de varias capas como son Movimiento global, movimiento local, generación de patrones de movimiento, cinemática inversa y dinámica inversa y finalmente una corrección off-line. Donde la entrada en este método es la meta global (es decir la configuración final del robot, en el entorno de marcha) y las salidas son los patrones de movimiento de las articulaciones junto con el patrón de referencia del ZMP. Por otro lado, se ha propuesto el método para generar el “Paso acíclico”. Este método abarca el movimiento del paso dinámico incluyendo todo el cuerpo del robot humanoide, desde desde cuaquier postura genérica estáticamente estable hasta otra; donde las entradas son los estados inicial y final del robot (esto es los ángulos iniciales y finales de las articulaciones) y las salidas son las trayectorias de referencia de cada articulación y del ZMP. Se han obtenido resultados satisfactorios en las simulaciones y en el robot humanoide real Rh-1 desarrollado en el Robotics lab de la Universidad Carlos III de Madrid. De igual manera el movimiento innovador llamado “Paso acíclico” se ha implemenado exitosamente en el robot humanoide HRP-2 (desarrollado por el AIST e Industrias Kawada Inc., Japon). Finalmente los resultados, contribuciones y trabajos futuros se expondran y discutirán. _______________________________________________The study of humanoid robot locomotion is currently a very active area in robotics, since humans build robots to work their environments in common cooperation and in harmony. Stability during walking motion is a critical fact in preventing the robot from falling down and causing the human or itself damages. This work tries to solve a part of the locomotion problem, which is, the “Gait Generation” methods used to obtain stable walking. Mass concentrated models are used to obtain stable walking motion. Thus the inverted pendulum model and the cart-table model are used to obtain stable walking motion in humanoid robots. In the inverted pendulum model, the mass of the pendulum drives the center of gravity (COG) motion of the humanoid robot while it is walking. It will be detailed that the COG moves like a free ball on a plane under the laws of the pendulum in the field of gravity. While in the cart-table model, the cart drives the COG motion during walking motion. In this case, the cart motion is treated as a servo control system, obtaining its motion from future reference states of the ZMP. The gait generation method proposed has many layers like Global motion, local motion, motion patterns generation, inverse kinematics and inverse dynamics and finally off-line correction. When the input in the gait generation method is the global goal (that is the final configuration of the robot in walking environment), and the output is the joint patterns and ZMP reference patterns. Otherwise, the “Acyclic gait” method is proposed. This method deals with the whole body humanoid robot dynamic step motion from any generic posture to another one when the input is the initial and goal robot states (that is the initial and goal joint angles) and the output is the joint and ZMP reference patterns. Successful simulation and actual results have been obtained with the Rh- 1 humanoid robot developed in the Robotics lab (Universidad Carlos III de Madrid, Spain) and the innovative motion called “Acyclic gait” implemented in the HRP-2 humanoid robot platform (developed by the AIST and Kawada Industries Inc., Japan). Furthermore, the results, contributions and future works will be discussed

    Biped walking trajectory design and stabilization

    Get PDF
    Biped robot locomotion has been studied intensively for many decades, and one of the most challenging topics of study is the dynamic motion of the biped robot. This thesis will utilize the zero-moment point (ZMP) along with a simplified dynamics model, the linear inverted pendulum model (LIPM), to design a dynamically stable trajectory for the biped robot, based on given gaits. Two different approaches will be used for the trajectory generation: boundedness constraint and linear-quadratic-regulator method. Both of these methods compute the center of mass (CoM) trajectory for the biped robot. A stabilizer is also designed, and the CoM trajectories are tested using Reem-c robot under the Gazebo simulation environment. Finally, a comprehensive comparison between the two methods will be given

    Humanoid Robots

    Get PDF
    For many years, the human being has been trying, in all ways, to recreate the complex mechanisms that form the human body. Such task is extremely complicated and the results are not totally satisfactory. However, with increasing technological advances based on theoretical and experimental researches, man gets, in a way, to copy or to imitate some systems of the human body. These researches not only intended to create humanoid robots, great part of them constituting autonomous systems, but also, in some way, to offer a higher knowledge of the systems that form the human body, objectifying possible applications in the technology of rehabilitation of human beings, gathering in a whole studies related not only to Robotics, but also to Biomechanics, Biomimmetics, Cybernetics, among other areas. This book presents a series of researches inspired by this ideal, carried through by various researchers worldwide, looking for to analyze and to discuss diverse subjects related to humanoid robots. The presented contributions explore aspects about robotic hands, learning, language, vision and locomotion

    From walking to running: robust and 3D humanoid gait generation via MPC

    Get PDF
    Humanoid robots are platforms that can succeed in tasks conceived for humans. From locomotion in unstructured environments, to driving cars, or working in industrial plants, these robots have a potential that is yet to be disclosed in systematic every-day-life applications. Such a perspective, however, is opposed by the need of solving complex engineering problems under the hardware and software point of view. In this thesis, we focus on the software side of the problem, and in particular on locomotion control. The operativity of a legged humanoid is subordinate to its capability of realizing a reliable locomotion. In many settings, perturbations may undermine the balance and make the robot fall. Moreover, complex and dynamic motions might be required by the context, as for instance it could be needed to start running or climbing stairs to achieve a certain location in the shortest time. We present gait generation schemes based on Model Predictive Control (MPC) that tackle both the problem of robustness and tridimensional dynamic motions. The proposed control schemes adopt the typical paradigm of centroidal MPC for reference motion generation, enforcing dynamic balance through the Zero Moment Point condition, plus a whole-body controller that maps the generated trajectories to joint commands. Each of the described predictive controllers also feature a so-called stability constraint, preventing the generation of diverging Center of Mass trajectories with respect to the Zero Moment Point. Robustness is addressed by modeling the humanoid as a Linear Inverted Pendulum and devising two types of strategies. For persistent perturbations, a way to use a disturbance observer and a technique for constraint tightening (to ensure robust constraint satisfaction) are presented. In the case of impulsive pushes instead, techniques for footstep and timing adaptation are introduced. The underlying approach is to interpret robustness as a MPC feasibility problem, thus aiming at ensuring the existence of a solution for the constrained optimization problem to be solved at each iteration in spite of the perturbations. This perspective allows to devise simple solutions to complex problems, favoring a reliable real-time implementation. For the tridimensional locomotion, on the other hand, the humanoid is modeled as a Variable Height Inverted Pendulum. Based on it, a two stage MPC is introduced with particular emphasis on the implementation of the stability constraint. The overall result is a gait generation scheme that allows the robot to overcome relatively complex environments constituted by a non-flat terrain, with also the capability of realizing running gaits. The proposed methods are validated in different settings: from conceptual simulations in Matlab to validations in the DART dynamic environment, up to experimental tests on the NAO and the OP3 platforms

    Simulating a Flexible Robotic System based on Musculoskeletal Modeling

    Get PDF
    Humanoid robotics offers a unique research tool for understanding the human brain and body. The synthesis of human motion is a complex procedure that involves accurate reconstruction of movement sequences, modeling of musculoskeletal kinematics, dynamics and actuation, and characterization of reliable performance criteria. Many of these processes have much in common with the problems found in robotics research, with the recent advent of complex humanoid systems. This work presents the design and development of a new-generation bipedal robot. Its modeling and simulation has been realized by using an open-source software to create and analyze dynamic simulation of movement: OpenSim. Starting from a study by Fuben He, our model aims to be used as an innovative approach to the study of a such type of robot in which there are series elastic actuators represented by active and passive spring components in series with motors. It has provided of monoarticular and biarticular joint in a very similar manner to human musculoskeletal model. This thesis is only the starting point of a wide range of other possible future works: from the control structure completion and whole-body control application, to imitation learning and reinforcement learning for human locomotion, from motion test on at ground to motion test on rough ground, and obviously the transition from simulation to practice with a real elastic bipedal robot biologically-inspired that can move like a human bein
    corecore