304 research outputs found

    Hiding Satisfying Assignments: Two are Better than One

    Full text link
    The evaluation of incomplete satisfiability solvers depends critically on the availability of hard satisfiable instances. A plausible source of such instances consists of random k-SAT formulas whose clauses are chosen uniformly from among all clauses satisfying some randomly chosen truth assignment A. Unfortunately, instances generated in this manner tend to be relatively easy and can be solved efficiently by practical heuristics. Roughly speaking, as the formula's density increases, for a number of different algorithms, A acts as a stronger and stronger attractor. Motivated by recent results on the geometry of the space of satisfying truth assignments of random k-SAT and NAE-k-SAT formulas, we introduce a simple twist on this basic model, which appears to dramatically increase its hardness. Namely, in addition to forbidding the clauses violated by the hidden assignment A, we also forbid the clauses violated by its complement, so that both A and complement of A are satisfying. It appears that under this "symmetrization'' the effects of the two attractors largely cancel out, making it much harder for algorithms to find any truth assignment. We give theoretical and experimental evidence supporting this assertion.Comment: Preliminary version appeared in AAAI 200

    Generalizing backdoors

    Get PDF
    Abstract. A powerful intuition in the design of search methods is that one wants to proactively select variables that simplify the problem instance as much as possible when these variables are assigned values. The notion of “Backdoor ” variables follows this intuition. In this work we generalize Backdoors in such a way to allow more general classes of sub-solvers, both complete and heuristic. In order to do so, Pseudo-Backdoors and Heuristic-Backdoors are formally introduced and then applied firstly to a simple Multiple Knapsack Problem and secondly to a complex combinatorial optimization problem in the area of stochastic inventory control. Our preliminary computational experience shows the effectiveness of these approaches that are able to produce very low run times and — in the case of Heuristic-Backdoors — high quality solutions by employing very simple heuristic rules such as greedy local search strategies.
    corecore