11 research outputs found

    Baire categories on small complexity classes and meager–comeager laws

    Get PDF
    We introduce two resource-bounded Baire category notions on small complexity classes such as P, QUASIPOLY, SUBEXP and PSPACE and on probabilistic classes such as BPP, which differ on how the corresponding finite extension strategies are computed. We give an alternative characterization of small sets via resource-bounded Banach-Mazur games. As an application of the first notion, we show that for almost every language A (i.e. all except a meager class) computable in subexponential time, PA = BPPA. We also show that almost all languages in PSPACE do not have small nonuniform complexity. We then switch to the second Baire category notion (called locally-computable), and show that the class SPARSE is meager in P. We show that in contrast to the resource-bounded measure case, meager–comeager laws can be obtained for many standard complexity classes, relative to locally-computable Baire category on BPP and PSPACE. Another topic where locally-computable Baire categories differ from resource-bounded measure is regarding weak-completeness: we show that there is no weak-completeness notion in P based on locally-computable Baire categories, i.e. every P-weakly-complete set is complete for P. We also prove that the class of complete sets for P under Turing-logspace reductions is meager in P, if P is not equal to DSPACE (log n), and that the same holds unconditionally for QUASIPOLY. Finally we observe that locally-computable Baire categories are incomparable with all existing resource-bounded measure notions on small complexity classes, which might explain why those two settings seem to differ so fundamentally

    Operator Algebras and Abstract Classification

    Get PDF
    This dissertation is dedicated to the study of operator spaces, operator algebras, and their automorphisms using methods from logic, particularly descriptive set theory and model theory. The material is divided into three main themes. The first one concerns the notion of Polish groupoids and functorial complexity. Such a study is motivated by the fact that the categories of Elliott-classifiable algebras, Elliott invariants, abelian separable C*-algebras, and arbitrary separable C*-algebras have the same complexity according to the usual notion of Borel complexity. The goal is to provide a functorial refinement of Borel complexity, able to capture the complexity of classifying the objects in a functorial way. Our main result is that functorial Borel complexity provides a finer distinction of the complexity of functorial classification problems. The second main theme concerns the classification problem for automorphisms of C*-algebras from the perspective of Borel complexity theory. Our results show that, for any non-elementary simple separable C*-algebra, the problem of classifying its automorphisms up to unitary equivalence transcends countable structures. Furthermore we prove that in the unital case the relation of unitary equivalence obeys the following dichotomy: it is either smooth, when the algebra has continuous trace, or not classifiable by countable structures. The last theme concerns applications of model theory to the study and construction of interesting operator spaces and operator systems. Specifically we show that the Gurarij operator space introduced by Oikhberg can be characterized as the Fraisse limit of the class of finite-dimensional 1-exact operator spaces. This proves that the Gurarij operator space is unique, homogeneous, and universal among separable 1-exact operator spaces. Moreover we prove that, while being 1-exact, the Gurarij operator space does not embed into any exact C*-algebra. Furthermore the ternary ring of operators generated by the Gurarij operator space is canonical, and does not depend on the concrete representation chosen. We also construct the operator system analog of the Gurarij operator space, and prove that it has analogous properties

    Resource-bounded Measure on Probabilistic Classes

    Get PDF
    We extend Lutz’s resource-bounded measure to probabilistic classes, and obtain notions of resource-bounded measure on probabilistic complexity classes such as BPE and BPEXP. Unlike former attempts, our resource bounded measure notions satisfy all three basic measure properties, that is every singleton {L} has measure zero, the whole space has measure one, and "enumerable infinite unions" of measure zero sets have measure zero

    Resource-bounded Measure on Probabilistic Classes

    Get PDF
    We extend Lutz’s resource-bounded measure to probabilistic classes, and obtain notions of resource-bounded measure on probabilistic complexity classes such as BPE and BPEXP. Unlike former attempts, our resource bounded measure notions satisfy all three basic measure properties, that is every singleton {L} has measure zero, the whole space has measure one, and "enumerable infinite unions" of measure zero sets have measure zero

    Martingale families and dimension in P

    Get PDF
    AbstractWe introduce a new measure notion on small complexity classes (called F-measure), based on martingale families, that gets rid of some drawbacks of previous measure notions: it can be used to define dimension because martingale families can make money on all strings, and it yields random sequences with an equal frequency of 0’s and 1’s. On larger complexity classes (E and above), F-measure is equivalent to Lutz resource-bounded measure. As applications to F-measure, we answer a question raised in [E. Allender, M. Strauss, Measure on small complexity classes, with application for BPP, in: Proc. of the 35th Ann. IEEE Symp. on Found. of Comp. Sci., 1994, pp. 807–818] by improving their result to: for almost every language A decidable in subexponential time, PA=BPPA. We show that almost all languages in PSPACE do not have small non-uniform complexity. We compare F-measure to previous notions and prove that martingale families are strictly stronger than Γ-measure [E. Allender, M. Strauss, Measure on small complexity classes, with application for BPP, in: Proc. of the 35th Ann. IEEE Symp. on Found. of Comp. Sci., 1994, pp. 807–818], we also discuss the limitations of martingale families concerning finite unions. We observe that all classes closed under polynomial many-one reductions have measure zero in EXP iff they have measure zero in SUBEXP. We use martingale families to introduce a natural generalization of Lutz resource-bounded dimension [J.H. Lutz, Dimension in complexity classes, in: Proceedings of the 15th Annual IEEE Conference on Computational Complexity, 2000, pp. 158–169] on P, which meets the intuition behind Lutz’s notion. We show that P-dimension lies between finite-state dimension and dimension on E. We prove an analogue of a Theorem of Eggleston in P, i.e. the class of languages whose characteristic sequence contains 1’s with frequency α, has dimension the Shannon entropy of α in P

    Baire categories on small complexity classes and meager–comeager laws

    No full text
    We introduce two resource-bounded Baire category notions on small complexity classes such as P, QUASIPOLY, SUBEXP and PSPACE and on probabilistic classes such as BPP, which differ on how the corresponding finite extension strategies are computed. We give an alternative characterization of small sets via resource-bounded Banach-Mazur games. As an application of the first notion, we show that for almost every language A (i.e. all except a meager class) computable in subexponential time, PA = BPPA. We also show that almost all languages in PSPACE do not have small nonuniform complexity. We then switch to the second Baire category notion (called locally-computable), and show that the class SPARSE is meager in P. We show that in contrast to the resource-bounded measure case, meager–comeager laws can be obtained for many standard complexity classes, relative to locally-computable Baire category on BPP and PSPACE. Another topic where locally-computable Baire categories differ from resource-bounded measure is regarding weak-completeness: we show that there is no weak-completeness notion in P based on locally-computable Baire categories, i.e. every P-weakly-complete set is complete for P. We also prove that the class of complete sets for P under Turing-logspace reductions is meager in P, if P is not equal to DSPACE (log n), and that the same holds unconditionally for QUASIPOLY. Finally we observe that locally-computable Baire categories are incomparable with all existing resource-bounded measure notions on small complexity classes, which might explain why those two settings seem to differ so fundamentally

    Baire categories on small complexity classes and meager–comeager laws

    No full text
    We introduce two resource-bounded Baire category notions on small complexity classes such as P, QUASIPOLY, SUBEXP and PSPACE and on probabilistic classes such as BPP, which differ on how the corresponding finite extension strategies are computed. We give an alternative characterization of small sets via resource-bounded Banach-Mazur games. As an application of the first notion, we show that for almost every language A (i.e. all except a meager class) computable in subexponential time, PA = BPPA. We also show that almost all languages in PSPACE do not have small nonuniform complexity. We then switch to the second Baire category notion (called locally-computable), and show that the class SPARSE is meager in P. We show that in contrast to the resource-bounded measure case, meager–comeager laws can be obtained for many standard complexity classes, relative to locally-computable Baire category on BPP and PSPACE. Another topic where locally-computable Baire categories differ from resource-bounded measure is regarding weak-completeness: we show that there is no weak-completeness notion in P based on locally-computable Baire categories, i.e. every P-weakly-complete set is complete for P. We also prove that the class of complete sets for P under Turing-logspace reductions is meager in P, if P is not equal to DSPACE (log n), and that the same holds unconditionally for QUASIPOLY. Finally we observe that locally-computable Baire categories are incomparable with all existing resource-bounded measure notions on small complexity classes, which might explain why those two settings seem to differ so fundamentally
    corecore