425 research outputs found

    A bag of words description scheme for image quality assessment

    Get PDF
    Every day millions of images are obtained, processed, compressed, saved, transmitted and reproduced. All these operations can cause distortions that affect their quality. The quality of these images should be measured subjectively. However, that brings the disadvantage of achieving a considerable number of tests with individuals requested to provide a statistical analysis of an image’s perceptual quality. Several objective metrics have been developed, that try to model the human perception of quality. However, in most applications the representation of human quality perception given by these metrics is far from the desired representation. Therefore, this work proposes the usage of machine learning models that allow for a better approximation. In this work, definitions for image and quality are given and some of the difficulties of the study of image quality are mentioned. Moreover, three metrics are initially explained. One uses the image’s original quality has a reference (SSIM) while the other two are no reference (BRISQUE and QAC). A comparison is made, showing a large discrepancy of values between the two kinds of metrics. The database that is used for the tests is TID2013. This database was chosen due to its dimension and by the fact of considering a large number of distortions. A study of each type of distortion in this database is made. Furthermore, some concepts of machine learning are introduced along with algorithms relevant in the context of this dissertation, notably, K-means, KNN and SVM. Description aggregator algorithms like “bag of words” and “fisher-vectors” are also mentioned. This dissertation studies a new model that combines machine learning and a quality metric for quality estimation. This model is based on the division of images in cells, where a specific metric is computed. With this division, it is possible to obtain local quality descriptors that will be aggregated using “bag of words”. A SVM with an RBF kernel is trained and tested on the same database and the results of the model are evaluated using cross-validation. The results are analysed using Pearson, Spearman and Kendall correlations and the RMSE to evaluate the representation of the model when compared with the subjective results. The model improves the results of the metric that was used and shows a new path to apply machine learning for quality evaluation.No nosso dia-a-dia as imagens são obtidas, processadas, comprimidas, guardadas, transmitidas e reproduzidas. Em qualquer destas operações podem ocorrer distorções que prejudicam a sua qualidade. A qualidade destas imagens pode ser medida de forma subjectiva, o que tem a desvantagem de serem necessários vários testes, a um número considerável de indivíduos para ser feita uma análise estatística da qualidade perceptual de uma imagem. Foram desenvolvidas várias métricas objectivas, que de alguma forma tentam modelar a percepção humana de qualidade. Todavia, em muitas aplicações a representação de percepção de qualidade humana dada por estas métricas fica aquém do desejável, razão porque se propõe neste trabalho usar modelos de reconhecimento de padrões que permitam uma maior aproximação. Neste trabalho, são dadas definições para imagem e qualidade e algumas das dificuldades do estudo da qualidade de imagem são referidas. É referida a importância da qualidade de imagem como ramo de estudo, e são estudadas diversas métricas de qualidade. São explicadas três métricas, uma delas que usa a qualidade original como referência (SSIM) e duas métricas sem referência (BRISQUE e QAC). Uma comparação é feita entre elas, mostrando- – se uma grande discrepância de valores entre os dois tipos de métricas. Para os testes feitos é usada a base de dados TID2013, que é muitas vezes considerada para estudos de qualidade de métricas devido à sua dimensão e ao facto de considerar um grande número de distorções. Neste trabalho também se fez um estudo dos tipos de distorção incluidos nesta base de dados e como é que eles são simulados. São introduzidos também alguns conceitos teóricos de reconhecimento de padrões e alguns algoritmos relevantes no contexto da dissertação, são descritos como o K-means, KNN e as SVMs. Algoritmos de agregação de descritores como o “bag of words” e o “fisher-vectors” também são referidos. Esta dissertação adiciona métodos de reconhecimento de padrões a métricas objectivas de qua– lidade de imagem. Uma nova técnica é proposta, baseada na divisão de imagens em células, nas quais uma métrica será calculada. Esta divisão permite obter descritores locais de qualidade que serão agregados usando “bag of words”. Uma SVM com kernel RBF é treinada e testada na mesma base de dados e os resultados do modelo são mostrados usando cross-validation. Os resultados são analisados usando as correlações de Pearson, Spearman e Kendall e o RMSE que permitem avaliar a proximidade entre a métrica desenvolvida e os resultados subjectivos. Este modelo melhora os resultados obtidos com a métrica usada e demonstra uma nova forma de aplicar modelos de reconhecimento de padrões ao estudo de avaliação de qualidade

    Preserving Trustworthiness and Confidentiality for Online Multimedia

    Get PDF
    Technology advancements in areas of mobile computing, social networks, and cloud computing have rapidly changed the way we communicate and interact. The wide adoption of media-oriented mobile devices such as smartphones and tablets enables people to capture information in various media formats, and offers them a rich platform for media consumption. The proliferation of online services and social networks makes it possible to store personal multimedia collection online and share them with family and friends anytime anywhere. Considering the increasing impact of digital multimedia and the trend of cloud computing, this dissertation explores the problem of how to evaluate trustworthiness and preserve confidentiality of online multimedia data. The dissertation consists of two parts. The first part examines the problem of evaluating trustworthiness of multimedia data distributed online. Given the digital nature of multimedia data, editing and tampering of the multimedia content becomes very easy. Therefore, it is important to analyze and reveal the processing history of a multimedia document in order to evaluate its trustworthiness. We propose a new forensic technique called ``Forensic Hash", which draws synergy between two related research areas of image hashing and non-reference multimedia forensics. A forensic hash is a compact signature capturing important information from the original multimedia document to assist forensic analysis and reveal processing history of a multimedia document under question. Our proposed technique is shown to have the advantage of being compact and offering efficient and accurate analysis to forensic questions that cannot be easily answered by convention forensic techniques. The answers that we obtain from the forensic hash provide valuable information on the trustworthiness of online multimedia data. The second part of this dissertation addresses the confidentiality issue of multimedia data stored with online services. The emerging cloud computing paradigm makes it attractive to store private multimedia data online for easy access and sharing. However, the potential of cloud services cannot be fully reached unless the issue of how to preserve confidentiality of sensitive data stored in the cloud is addressed. In this dissertation, we explore techniques that enable confidentiality-preserving search of encrypted multimedia, which can play a critical role in secure online multimedia services. Techniques from image processing, information retrieval, and cryptography are jointly and strategically applied to allow efficient rank-ordered search over encrypted multimedia database and at the same time preserve data confidentiality against malicious intruders and service providers. We demonstrate high efficiency and accuracy of the proposed techniques and provide a quantitative comparative study with conventional techniques based on heavy-weight cryptography primitives

    Towards Learning Representations in Visual Computing Tasks

    Get PDF
    abstract: The performance of most of the visual computing tasks depends on the quality of the features extracted from the raw data. Insightful feature representation increases the performance of many learning algorithms by exposing the underlying explanatory factors of the output for the unobserved input. A good representation should also handle anomalies in the data such as missing samples and noisy input caused by the undesired, external factors of variation. It should also reduce the data redundancy. Over the years, many feature extraction processes have been invented to produce good representations of raw images and videos. The feature extraction processes can be categorized into three groups. The first group contains processes that are hand-crafted for a specific task. Hand-engineering features requires the knowledge of domain experts and manual labor. However, the feature extraction process is interpretable and explainable. Next group contains the latent-feature extraction processes. While the original feature lies in a high-dimensional space, the relevant factors for a task often lie on a lower dimensional manifold. The latent-feature extraction employs hidden variables to expose the underlying data properties that cannot be directly measured from the input. Latent features seek a specific structure such as sparsity or low-rank into the derived representation through sophisticated optimization techniques. The last category is that of deep features. These are obtained by passing raw input data with minimal pre-processing through a deep network. Its parameters are computed by iteratively minimizing a task-based loss. In this dissertation, I present four pieces of work where I create and learn suitable data representations. The first task employs hand-crafted features to perform clinically-relevant retrieval of diabetic retinopathy images. The second task uses latent features to perform content-adaptive image enhancement. The third task ranks a pair of images based on their aestheticism. The goal of the last task is to capture localized image artifacts in small datasets with patch-level labels. For both these tasks, I propose novel deep architectures and show significant improvement over the previous state-of-art approaches. A suitable combination of feature representations augmented with an appropriate learning approach can increase performance for most visual computing tasks.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Introduction to Facial Micro Expressions Analysis Using Color and Depth Images: A Matlab Coding Approach (Second Edition, 2023)

    Full text link
    The book attempts to introduce a gentle introduction to the field of Facial Micro Expressions Recognition (FMER) using Color and Depth images, with the aid of MATLAB programming environment. FMER is a subset of image processing and it is a multidisciplinary topic to analysis. So, it requires familiarity with other topics of Artifactual Intelligence (AI) such as machine learning, digital image processing, psychology and more. So, it is a great opportunity to write a book which covers all of these topics for beginner to professional readers in the field of AI and even without having background of AI. Our goal is to provide a standalone introduction in the field of MFER analysis in the form of theorical descriptions for readers with no background in image processing with reproducible Matlab practical examples. Also, we describe any basic definitions for FMER analysis and MATLAB library which is used in the text, that helps final reader to apply the experiments in the real-world applications. We believe that this book is suitable for students, researchers, and professionals alike, who need to develop practical skills, along with a basic understanding of the field. We expect that, after reading this book, the reader feels comfortable with different key stages such as color and depth image processing, color and depth image representation, classification, machine learning, facial micro-expressions recognition, feature extraction and dimensionality reduction. The book attempts to introduce a gentle introduction to the field of Facial Micro Expressions Recognition (FMER) using Color and Depth images, with the aid of MATLAB programming environment.Comment: This is the second edition of the boo

    Statistical methods for tissue array images - algorithmic scoring and co-training

    Full text link
    Recent advances in tissue microarray technology have allowed immunohistochemistry to become a powerful medium-to-high throughput analysis tool, particularly for the validation of diagnostic and prognostic biomarkers. However, as study size grows, the manual evaluation of these assays becomes a prohibitive limitation; it vastly reduces throughput and greatly increases variability and expense. We propose an algorithm - Tissue Array Co-Occurrence Matrix Analysis (TACOMA) - for quantifying cellular phenotypes based on textural regularity summarized by local inter-pixel relationships. The algorithm can be easily trained for any staining pattern, is absent of sensitive tuning parameters and has the ability to report salient pixels in an image that contribute to its score. Pathologists' input via informative training patches is an important aspect of the algorithm that allows the training for any specific marker or cell type. With co-training, the error rate of TACOMA can be reduced substantially for a very small training sample (e.g., with size 30). We give theoretical insights into the success of co-training via thinning of the feature set in a high-dimensional setting when there is "sufficient" redundancy among the features. TACOMA is flexible, transparent and provides a scoring process that can be evaluated with clarity and confidence. In a study based on an estrogen receptor (ER) marker, we show that TACOMA is comparable to, or outperforms, pathologists' performance in terms of accuracy and repeatability.Comment: Published in at http://dx.doi.org/10.1214/12-AOAS543 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Plant Seed Identification

    Get PDF
    Plant seed identification is routinely performed for seed certification in seed trade, phytosanitary certification for the import and export of agricultural commodities, and regulatory monitoring, surveillance, and enforcement. Current identification is performed manually by seed analysts with limited aiding tools. Extensive expertise and time is required, especially for small, morphologically similar seeds. Computers are, however, especially good at recognizing subtle differences that humans find difficult to perceive. In this thesis, a 2D, image-based computer-assisted approach is proposed. The size of plant seeds is extremely small compared with daily objects. The microscopic images of plant seeds are usually degraded by defocus blur due to the high magnification of the imaging equipment. It is necessary and beneficial to differentiate the in-focus and blurred regions given that only sharp regions carry distinctive information usually for identification. If the object of interest, the plant seed in this case, is in- focus under a single image frame, the amount of defocus blur can be employed as a cue to separate the object and the cluttered background. If the defocus blur is too strong to obscure the object itself, sharp regions of multiple image frames acquired at different focal distance can be merged together to make an all-in-focus image. This thesis describes a novel non-reference sharpness metric which exploits the distribution difference of uniform LBP patterns in blurred and non-blurred image regions. It runs in realtime on a single core cpu and responses much better on low contrast sharp regions than the competitor metrics. Its benefits are shown both in defocus segmentation and focal stacking. With the obtained all-in-focus seed image, a scale-wise pooling method is proposed to construct its feature representation. Since the imaging settings in lab testing are well constrained, the seed objects in the acquired image can be assumed to have measureable scale and controllable scale variance. The proposed method utilizes real pixel scale information and allows for accurate comparison of seeds across scales. By cross-validation on our high quality seed image dataset, better identification rate (95%) was achieved compared with pre- trained convolutional-neural-network-based models (93.6%). It offers an alternative method for image based identification with all-in-focus object images of limited scale variance. The very first digital seed identification tool of its kind was built and deployed for test in the seed laboratory of Canadian food inspection agency (CFIA). The proposed focal stacking algorithm was employed to create all-in-focus images, whereas scale-wise pooling feature representation was used as the image signature. Throughput, workload, and identification rate were evaluated and seed analysts reported significantly lower mental demand (p = 0.00245) when using the provided tool compared with manual identification. Although the identification rate in practical test is only around 50%, I have demonstrated common mistakes that have been made in the imaging process and possible ways to deploy the tool to improve the recognition rate

    Collaborative Appearance-Based Place Recognition and Improving Place Recognition Using Detection of Dynamic Objects

    Full text link
    This dissertation makes contributions to the problem of Long-Term Appearance-Based Place Recognition. We present a framework for place recognition in a collaborative scheme and a method to reduce the impact of dynamic objects on place representations. We demonstrate our findings using a state-of-the-art place recognition approach. We begin in Part I by describing the general problem of place recognition and its importance in applications where accurate localization is crucial. We discuss feature detection and description and also explain the functioning of several place recognition frameworks. In Part II, we present a novel framework for collaboration between agents from a pure appearance-based place recognition perspective. Using this framework, multiple agents can efficiently share partial or complete knowledge about places and benefit from their teamwork. This collaborative framework allows agents with limited storage and memory capacity to become useful in environment exploration tasks (for instance, by enabling remote recognition); includes procedures to manage an agent’s memory load and distributes knowledge of places across agents; allows the reuse of knowledge from one agent to another; and increases the tolerance for failure of individual agents. Part II also defines metrics which allow us to measure the performance of a system that uses the collaborative framework. Finally, in Part III, we present an innovative method to improve the recognition of places in environments densely populated by dynamic objects. We demonstrate that we can improve the recognition performance in these environments by incorporating high- level information from dynamic objects. Tests conducted using a synthetic dataset show the benefits of our approach. The proposed method allows the system to significantly improve the recognition performance in the photo-realistic dataset while reducing storage requirements, resulting in up to 23.7 percent less storage space than the state-of-the-art approach that we have extended; smaller representations also reduced the time required to match places. In Part III, we also formulate the concept of a valid place representation and determine the quality of the observation based on dynamic objects present in the agent’s view. Of course, recognition systems that are sensitive to dynamic objects incur additional computational costs to recognize those objects. We show that this additional cost is outweighed by the benefits that incorporating dynamic object detection in the place recognition pipeline. Our findings can be used in many applications, including applications for navigation, e.g. assisting visually impaired individuals with navigating indoors, or autonomous vehicles

    SEMANTIC3D.NET: A NEW LARGE-SCALE POINT CLOUD CLASSIFICATION BENCHMARK

    Get PDF
    • …
    corecore