320 research outputs found

    Semantic spaces revisited: investigating the performance of auto-annotation and semantic retrieval using semantic spaces

    No full text
    Semantic spaces encode similarity relationships between objects as a function of position in a mathematical space. This paper discusses three different formulations for building semantic spaces which allow the automatic-annotation and semantic retrieval of images. The models discussed in this paper require that the image content be described in the form of a series of visual-terms, rather than as a continuous feature-vector. The paper also discusses how these term-based models compare to the latest state-of-the-art continuous feature models for auto-annotation and retrieval

    Evolution of Information Retrieval System: Critical Review of Multimedia Information Retrieval System Based On Content, Context, and Concept

    Get PDF
    In recent years the explosive growth of information affects the flood of information. The amount of information must be followed by the development of the effective Information Retrieval System (IRS) so that the information will be easily accessible and useful for the user. The source of Information contains various media format, beside text there is also image, audio, and video that called multimedia. A large number of multimedia information rise the Multimedia Information Retrieval System (MIRS). Most of MIRS today is monolithic or only using one media format like Google1 for text search, tineye2 for image search, youtube3 for video search or 4shared4 for music and audio search. There is a need of information in any kind of media, not only retrieve the document in text format, but also retrieve the document in an image, audio and video format at once from any kind media format of the query. This study reviews the evolution of IRS, regress from text-based to concept- based MIRS. Unified Multimedia Indexing technique is discussed along with Concept-based MIRS. This critical review concludes that the evolution of IRS follows three paces: content-based, context-based and concept-based. Each pace takes on indexing system and retrieval techniques to optimize information retrieved. The challenge is how to come up with a retrieval technique that can process unified MIRS in order to retrieve optimally the relevant document

    Enhancing Automatic Annotation for Optimal Image Retrieval

    Get PDF
    Image search and retrieval based on content is very cumbersome task particularly when the image database is large. The accuracy of the retrieval as well as the processing speed are two important measures used for assessing and comparing the effectiveness of various systems. Text retrieval is more mature and advanced than image content retrieval. In this dissertation, the focus is on converting image content into text tags that can be easily searched using standard search engines where the size and speed issues of the database have been already dealt with. Therefore, image tagging becomes an essential tool for image retrieval from large image databases. Automation of image tagging has received considerable attention by many researchers in recent years. The optimal goal of image description is to automatically annotate images with tags that semantically represent the image content. The speed and accuracy of Image retrieval from large databases are few of the important domains that can benefit from automatic tagging. In this work, several state of the art image classification and image tagging techniques are reviewed. We propose a new self-learning multilayered tagging framework that can address the limitations of current approaches and provide mutual accuracy improvement between the recognition layer and the annotation layer. Our results indicate that the proposed framework can improve the overall accuracy of information retrieval in a variety of image databases

    Remote Sensing Image Scene Classification: Benchmark and State of the Art

    Full text link
    Remote sensing image scene classification plays an important role in a wide range of applications and hence has been receiving remarkable attention. During the past years, significant efforts have been made to develop various datasets or present a variety of approaches for scene classification from remote sensing images. However, a systematic review of the literature concerning datasets and methods for scene classification is still lacking. In addition, almost all existing datasets have a number of limitations, including the small scale of scene classes and the image numbers, the lack of image variations and diversity, and the saturation of accuracy. These limitations severely limit the development of new approaches especially deep learning-based methods. This paper first provides a comprehensive review of the recent progress. Then, we propose a large-scale dataset, termed "NWPU-RESISC45", which is a publicly available benchmark for REmote Sensing Image Scene Classification (RESISC), created by Northwestern Polytechnical University (NWPU). This dataset contains 31,500 images, covering 45 scene classes with 700 images in each class. The proposed NWPU-RESISC45 (i) is large-scale on the scene classes and the total image number, (ii) holds big variations in translation, spatial resolution, viewpoint, object pose, illumination, background, and occlusion, and (iii) has high within-class diversity and between-class similarity. The creation of this dataset will enable the community to develop and evaluate various data-driven algorithms. Finally, several representative methods are evaluated using the proposed dataset and the results are reported as a useful baseline for future research.Comment: This manuscript is the accepted version for Proceedings of the IEE

    IRIM at TRECVID 2013: Semantic Indexing and Instance Search

    Get PDF
    International audienceThe IRIM group is a consortium of French teams working on Multimedia Indexing and Retrieval. This paper describes its participation to the TRECVID 2013 semantic indexing and instance search tasks. For the semantic indexing task, our approach uses a six-stages processing pipelines for computing scores for the likelihood of a video shot to contain a target concept. These scores are then used for producing a ranked list of images or shots that are the most likely to contain the target concept. The pipeline is composed of the following steps: descriptor extraction, descriptor optimization, classiffication, fusion of descriptor variants, higher-level fusion, and re-ranking. We evaluated a number of different descriptors and tried different fusion strategies. The best IRIM run has a Mean Inferred Average Precision of 0.2796, which ranked us 4th out of 26 participants

    A Novel System for Content-Based Retrieval of Single and Multi-Label High-Dimensional Remote Sensing Images

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper presents a novel content-based remote sensing (RS) image retrieval system that consists of the following. First, an image description method that characterizes both spatial and spectral information content of RS images. Second, a supervised retrieval method that efficiently models and exploits the sparsity of RS image descriptors. The proposed image description method characterizes the spectral content by three different novel spectral descriptors that are: raw pixel values, simple bag of spectral values and the extended bag of spectral values descriptors. To model the spatial content of RS images, we consider the well-known scale invariant feature transform-based bag of visual words approach. With the conjunction of the spatial and the spectral descriptors, RS image retrieval is achieved by a novel sparse reconstruction-based RS image retrieval method. The proposed method considers a novel measure of label likelihood in the framework of sparse reconstruction-based classifiers and generalizes the original sparse classifier to the case both single-label and multi-label RS image retrieval problems. Finally, to enhance retrieval performance, we introduce a strategy to exploit the sensitivity of the sparse reconstruction-based method to different dictionary words. Experimental results obtained on two benchmark archives show the effectiveness of the proposed system.EC/H2020/759764/EU/Accurate and Scalable Processing of Big Data in Earth Observation/BigEart

    Semantics-Preserving Bag-of-Words Models and Applications

    Get PDF
    corecore