3,125 research outputs found

    Image processing system based on similarity/dissimilarity measures to classify binary images from contour-based features

    Get PDF
    Image Processing Systems (IPS) try to solve tasks like image classification or segmentation based on its content. Many authors proposed a variety of techniques to tackle the image classification task. Plenty of methods address the performance of the IPS [1], as long as the influence of many external circumstances, such as illumination, rotation, and noise [2]. However, there is an increasing interest in classifying shapes from binary images (BI). Shape Classification (SC) from BI considers a segmented image as a sample (backgroundsegmentation [3]) and aims to identify objects based in its shape..

    Shape recognition through multi-level fusion of features and classifiers

    Get PDF
    Shape recognition is a fundamental problem and a special type of image classification, where each shape is considered as a class. Current approaches to shape recognition mainly focus on designing low-level shape descriptors, and classify them using some machine learning approaches. In order to achieve effective learning of shape features, it is essential to ensure that a comprehensive set of high quality features can be extracted from the original shape data. Thus we have been motivated to develop methods of fusion of features and classifiers for advancing the classification performance. In this paper, we propose a multi-level framework for fusion of features and classifiers in the setting of gran-ular computing. The proposed framework involves creation of diversity among classifiers, through adopting feature selection and fusion to create diverse feature sets and to train diverse classifiers using different learn-Xinming Wang algorithms. The experimental results show that the proposed multi-level framework can effectively create diversity among classifiers leading to considerable advances in the classification performance
    corecore