6,037 research outputs found

    Realtime market microstructure analysis: online Transaction Cost Analysis

    Full text link
    Motivated by the practical challenge in monitoring the performance of a large number of algorithmic trading orders, this paper provides a methodology that leads to automatic discovery of the causes that lie behind a poor trading performance. It also gives theoretical foundations to a generic framework for real-time trading analysis. Academic literature provides different ways to formalize these algorithms and show how optimal they can be from a mean-variance, a stochastic control, an impulse control or a statistical learning viewpoint. This paper is agnostic about the way the algorithm has been built and provides a theoretical formalism to identify in real-time the market conditions that influenced its efficiency or inefficiency. For a given set of characteristics describing the market context, selected by a practitioner, we first show how a set of additional derived explanatory factors, called anomaly detectors, can be created for each market order. We then will present an online methodology to quantify how this extended set of factors, at any given time, predicts which of the orders are underperforming while calculating the predictive power of this explanatory factor set. Armed with this information, which we call influence analysis, we intend to empower the order monitoring user to take appropriate action on any affected orders by re-calibrating the trading algorithms working the order through new parameters, pausing their execution or taking over more direct trading control. Also we intend that use of this method in the post trade analysis of algorithms can be taken advantage of to automatically adjust their trading action.Comment: 33 pages, 12 figure

    Online Detection of False Data Injection Attacks to Synchrophasor Measurements: A Data-Driven Approach

    Get PDF
    This paper presents an online data-driven algorithm to detect false data injection attacks towards synchronphasor measurements. The proposed algorithm applies density-based local outlier factor (LOF) analysis to detect the anomalies among the data, which can be described as spatio-temporal outliers among all the synchrophasor measurements from the grid. By leveraging the spatio-temporal correlations among multiple time instants of synchrophasor measurements, this approach could detect false data injection attacks which are otherwise not detectable using measurements obtained from single snapshot. This algorithm requires no prior knowledge on system parameters or topology. The computational speed shows satisfactory potential for online monitoring applications. Case studies on both synthetic and real-world synchrophasor data verify the effectiveness of the proposed algorithm

    Robust Rotation Synchronization via Low-rank and Sparse Matrix Decomposition

    Get PDF
    This paper deals with the rotation synchronization problem, which arises in global registration of 3D point-sets and in structure from motion. The problem is formulated in an unprecedented way as a "low-rank and sparse" matrix decomposition that handles both outliers and missing data. A minimization strategy, dubbed R-GoDec, is also proposed and evaluated experimentally against state-of-the-art algorithms on simulated and real data. The results show that R-GoDec is the fastest among the robust algorithms.Comment: The material contained in this paper is part of a manuscript submitted to CVI

    One-Class Classification: Taxonomy of Study and Review of Techniques

    Full text link
    One-class classification (OCC) algorithms aim to build classification models when the negative class is either absent, poorly sampled or not well defined. This unique situation constrains the learning of efficient classifiers by defining class boundary just with the knowledge of positive class. The OCC problem has been considered and applied under many research themes, such as outlier/novelty detection and concept learning. In this paper we present a unified view of the general problem of OCC by presenting a taxonomy of study for OCC problems, which is based on the availability of training data, algorithms used and the application domains applied. We further delve into each of the categories of the proposed taxonomy and present a comprehensive literature review of the OCC algorithms, techniques and methodologies with a focus on their significance, limitations and applications. We conclude our paper by discussing some open research problems in the field of OCC and present our vision for future research.Comment: 24 pages + 11 pages of references, 8 figure

    Byzantine Attack and Defense in Cognitive Radio Networks: A Survey

    Full text link
    The Byzantine attack in cooperative spectrum sensing (CSS), also known as the spectrum sensing data falsification (SSDF) attack in the literature, is one of the key adversaries to the success of cognitive radio networks (CRNs). In the past couple of years, the research on the Byzantine attack and defense strategies has gained worldwide increasing attention. In this paper, we provide a comprehensive survey and tutorial on the recent advances in the Byzantine attack and defense for CSS in CRNs. Specifically, we first briefly present the preliminaries of CSS for general readers, including signal detection techniques, hypothesis testing, and data fusion. Second, we analyze the spear and shield relation between Byzantine attack and defense from three aspects: the vulnerability of CSS to attack, the obstacles in CSS to defense, and the games between attack and defense. Then, we propose a taxonomy of the existing Byzantine attack behaviors and elaborate on the corresponding attack parameters, which determine where, who, how, and when to launch attacks. Next, from the perspectives of homogeneous or heterogeneous scenarios, we classify the existing defense algorithms, and provide an in-depth tutorial on the state-of-the-art Byzantine defense schemes, commonly known as robust or secure CSS in the literature. Furthermore, we highlight the unsolved research challenges and depict the future research directions.Comment: Accepted by IEEE Communications Surveys and Tutoiral
    corecore