1,520 research outputs found

    Bio-inspired network security for 5G-enabled IoT applications

    Get PDF
    Every IPv6-enabled device connected and communicating over the Internet forms the Internet of things (IoT) that is prevalent in society and is used in daily life. This IoT platform will quickly grow to be populated with billions or more objects by making every electrical appliance, car, and even items of furniture smart and connected. The 5th generation (5G) and beyond networks will further boost these IoT systems. The massive utilization of these systems over gigabits per second generates numerous issues. Owing to the huge complexity in large-scale deployment of IoT, data privacy and security are the most prominent challenges, especially for critical applications such as Industry 4.0, e-healthcare, and military. Threat agents persistently strive to find new vulnerabilities and exploit them. Therefore, including promising security measures to support the running systems, not to harm or collapse them, is essential. Nature-inspired algorithms have the capability to provide autonomous and sustainable defense and healing mechanisms. This paper first surveys the 5G network layer security for IoT applications and lists the network layer security vulnerabilities and requirements in wireless sensor networks, IoT, and 5G-enabled IoT. Second, a detailed literature review is conducted with the current network layer security methods and the bio-inspired techniques for IoT applications exchanging data packets over 5G. Finally, the bio-inspired algorithms are analyzed in the context of providing a secure network layer for IoT applications connected over 5G and beyond networks

    Proceedings of Abstracts Engineering and Computer Science Research Conference 2019

    Get PDF
    © 2019 The Author(s). This is an open-access work distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For further details please see https://creativecommons.org/licenses/by/4.0/. Note: Keynote: Fluorescence visualisation to evaluate effectiveness of personal protective equipment for infection control is © 2019 Crown copyright and so is licensed under the Open Government Licence v3.0. Under this licence users are permitted to copy, publish, distribute and transmit the Information; adapt the Information; exploit the Information commercially and non-commercially for example, by combining it with other Information, or by including it in your own product or application. Where you do any of the above you must acknowledge the source of the Information in your product or application by including or linking to any attribution statement specified by the Information Provider(s) and, where possible, provide a link to this licence: http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/This book is the record of abstracts submitted and accepted for presentation at the Inaugural Engineering and Computer Science Research Conference held 17th April 2019 at the University of Hertfordshire, Hatfield, UK. This conference is a local event aiming at bringing together the research students, staff and eminent external guests to celebrate Engineering and Computer Science Research at the University of Hertfordshire. The ECS Research Conference aims to showcase the broad landscape of research taking place in the School of Engineering and Computer Science. The 2019 conference was articulated around three topical cross-disciplinary themes: Make and Preserve the Future; Connect the People and Cities; and Protect and Care

    Diffusive MIMO Molecular Communications: Channel Estimation, Equalization and Detection

    Full text link
    In diffusion-based communication, as for molecular systems, the achievable data rate is low due to the stochastic nature of diffusion which exhibits a severe inter-symbol-interference (ISI). Multiple-Input Multiple-Output (MIMO) multiplexing improves the data rate at the expense of an inter-link interference (ILI). This paper investigates training-based channel estimation schemes for diffusive MIMO (D-MIMO) systems and corresponding equalization methods. Maximum likelihood and least-squares estimators of mean channel are derived, and the training sequence is designed to minimize the mean square error (MSE). Numerical validations in terms of MSE are compared with Cramer-Rao bound derived herein. Equalization is based on decision feedback equalizer (DFE) structure as this is effective in mitigating diffusive ISI/ILI. Zero-forcing, minimum MSE and least-squares criteria have been paired to DFE, and their performances are evaluated in terms of bit error probability. Since D-MIMO systems are severely affected by the ILI because of short transmitters inter-distance, D-MIMO time interleaving is exploited as countermeasure to mitigate the ILI with remarkable performance improvements. The feasibility of a block-type communication including training and data equalization is explored for D-MIMO, and system-level performances are numerically derived.Comment: Accepted paper at IEEE transaction on Communicatio

    SPARC 2019 Fake news & home truths : Salford postgraduate annual research conference book of abstracts

    Get PDF
    Welcome to the Book of Abstracts for the 2019 SPARC conference. This year we not only celebrate the work of our PGRs but also our first ever Doctoral School Best Supervisor awards, which makes this year’s conference extra special. Once again we have received a tremendous contribution from our postgraduate research community; with over 90 presenters, the conference truly showcases a vibrant, innovative and collaborative PGR community at Salford. These abstracts provide a taster of the inspiring, relevant and impactful research in progress, and provide delegates with a reference point for networking and initiating critical debate. Find an abstract that interests you, and say “Hello” to the author. Who knows what might result from your conversation? With such wide-ranging topics being showcased, we encourage you to take up this great opportunity to engage with researchers working in different subject areas from your own. To meet global challenges, high impact research needs interdisciplinary collaboration. This is recognised and rewarded by all major research funders. Engaging with the work of others and forging collaborations across subject areas is an essential skill for the next generation of researchers. Even better, our free ice cream van means that you can have those conversations while enjoying a refreshing ice lolly

    A Review on the Role of Nano-Communication in Future Healthcare Systems: A Big Data Analytics Perspective

    Get PDF
    This paper presents a first-time review of the open literature focused on the significance of big data generated within nano-sensors and nano-communication networks intended for future healthcare and biomedical applications. It is aimed towards the development of modern smart healthcare systems enabled with P4, i.e. predictive, preventive, personalized and participatory capabilities to perform diagnostics, monitoring, and treatment. The analytical capabilities that can be produced from the substantial amount of data gathered in such networks will aid in exploiting the practical intelligence and learning capabilities that could be further integrated with conventional medical and health data leading to more efficient decision making. We have also proposed a big data analytics framework for gathering intelligence, form the healthcare big data, required by futuristic smart healthcare to address relevant problems and exploit possible opportunities in future applications. Finally, the open challenges, future directions for researchers in the evolving healthcare domain, are presented

    Network Challenges of Novel Sources of Big Data

    Get PDF
    Networks and networking technologies are the key components of Big Data systems. Modern and future wireless sensor networks (WSN) act as one of the major sources of data for Big Data systems. Wireless networking technologies allow to offload the traffic generated by WSNs to the Internet access points for further delivery to the cloud storage systems. In this thesis we concentrate on the detailed analysis of the following two networking aspects of future Big Data systems: (i) efficient data collection algorithms in WSNs and (ii) wireless data delivery to the Internet access points.The performance evaluation and optimization models developed in the thesis are based on the application of probability theory, theory of stochastic processes, Markov chain theory, stochastic and integral geometries and the queuing theory.The introductory part discusses major components of Big Data systems, identify networking aspects as the subject of interest and formulates the tasks for the thesis. Further, different challenges of Big Data systems are presented in detail with several competitive architectures highlighted. After that, we proceed investigating data collection approaches in modern and future WSNs. We back up the possibility of using the proposed techniques by providing the associated performance evaluation results. We also pay attention to the process of collected data delivery to the Internet backbone access point, and demonstrate that the capacity of conventional cellular systems may not be sufficient for a set of WSN applications including both video monitoring at macro-scale and sensor data delivery from the nano/micro scales. Seeking for a wireless technology for data offloading from WSNs, we study millimeter and terahertz bands. We show there that the interference structure and signal propagation are fundamentally different due to the required use of highly directional antennas, human blocking and molecular absorption. Finally, to characterize the process of collected data transmission from a number of WSNs over the millimeter wave or terahertz backhauls we formulate and solve a queuing system with multiple auto correlated inputs and the service distribution corresponding to the transmission time over a wireless channel with hybrid automatic repeat request mechanism taken into account
    • …
    corecore