28,825 research outputs found

    A path planning and path-following control framework for a general 2-trailer with a car-like tractor

    Full text link
    Maneuvering a general 2-trailer with a car-like tractor in backward motion is a task that requires significant skill to master and is unarguably one of the most complicated tasks a truck driver has to perform. This paper presents a path planning and path-following control solution that can be used to automatically plan and execute difficult parking and obstacle avoidance maneuvers by combining backward and forward motion. A lattice-based path planning framework is developed in order to generate kinematically feasible and collision-free paths and a path-following controller is designed to stabilize the lateral and angular path-following error states during path execution. To estimate the vehicle state needed for control, a nonlinear observer is developed which only utilizes information from sensors that are mounted on the car-like tractor, making the system independent of additional trailer sensors. The proposed path planning and path-following control framework is implemented on a full-scale test vehicle and results from simulations and real-world experiments are presented.Comment: Preprin

    Optimization of vehicle-trailer connection systems

    Get PDF
    The three main requirements of a vehicle-trailer connection system are: en route stability, over- or under-steering restraint, minimum off-tracking along curved path. Linking the two units by four-bar trapeziums, wider stability margins may be attained in comparison with the conventional pintle-hitch for both instability types, divergent or oscillating. The stability maps are traced applying the Hurwitz method or the direct analysis of the characteristic equation at the instability threshold. Several types of four-bar linkages may be quickly tested, with the drawbars converging towards the trailer or the towing unit. The latter configuration appears preferable in terms of self-stability and may yield high critical speeds by optimising the geometrical and physical properties. Nevertheless, the system stability may be improved in general by additional vibration dampers in parallel with the connection linkage. Moreover, the four-bar connection may produce significant corrections of the under-steering or over-steering behaviour of the vehicle-train after a steering command from the driver. The offtracking along the curved paths may be also optimized or kept inside prefixed margins of acceptableness. Activating electronic stability systems if necessary, fair results are obtainable for both the steering conduct and the off-tracking

    A Discrete Geometric Optimal Control Framework for Systems with Symmetries

    Get PDF
    This paper studies the optimal motion control of mechanical systems through a discrete geometric approach. At the core of our formulation is a discrete Lagrange-d’Alembert- Pontryagin variational principle, from which are derived discrete equations of motion that serve as constraints in our optimization framework. We apply this discrete mechanical approach to holonomic systems with symmetries and, as a result, geometric structure and motion invariants are preserved. We illustrate our method by computing optimal trajectories for a simple model of an air vehicle flying through a digital terrain elevation map, and point out some of the numerical benefits that ensue

    Anti-Jackknifing Control of Tractor-Trailer Vehicles via Intrinsically Stable MPC

    Get PDF
    It is common knowledge that tractor-trailer vehicles are affected by jackknifing, a phenomenon that consists in the divergence of the trailer hitch angle and ultimately causes the vehicle to fold up. For the case of backwards motion, in which jackknifing can also occur at low speeds, we present a control method that drives the vehicle along a reference Cartesian trajectory while avoiding the divergence of the hitch angle. In particular, a feedback control law is obtained by combining two actions: a tracking term, computed using input-output linearization, and a corrective term, generated via IS-MPC, an intrinsically stable MPC scheme which is effective for stable inversion of nonminimum-phase systems. The proposed method has been verified in simulation and experimentally validated on a purposely built prototype
    corecore