2,028 research outputs found

    A High-Order Kernel Method for Diffusion and Reaction-Diffusion Equations on Surfaces

    Get PDF
    In this paper we present a high-order kernel method for numerically solving diffusion and reaction-diffusion partial differential equations (PDEs) on smooth, closed surfaces embedded in Rd\mathbb{R}^d. For two-dimensional surfaces embedded in R3\mathbb{R}^3, these types of problems have received growing interest in biology, chemistry, and computer graphics to model such things as diffusion of chemicals on biological cells or membranes, pattern formations in biology, nonlinear chemical oscillators in excitable media, and texture mappings. Our kernel method is based on radial basis functions (RBFs) and uses a semi-discrete approach (or the method-of-lines) in which the surface derivative operators that appear in the PDEs are approximated using collocation. The method only requires nodes at "scattered" locations on the surface and the corresponding normal vectors to the surface. Additionally, it does not rely on any surface-based metrics and avoids any intrinsic coordinate systems, and thus does not suffer from any coordinate distortions or singularities. We provide error estimates for the kernel-based approximate surface derivative operators and numerically study the accuracy and stability of the method. Applications to different non-linear systems of PDEs that arise in biology and chemistry are also presented

    Nonlinear modes of clarinet-like musical instruments

    Full text link
    The concept of nonlinear modes is applied in order to analyze the behavior of a model of woodwind reed instruments. Using a modal expansion of the impedance of the instrument, and by projecting the equation for the acoustic pressure on the normal modes of the air column, a system of second order ordinary differential equations is obtained. The equations are coupled through the nonlinear relation describing the volume flow of air through the reed channel in response to the pressure difference across the reed. The system is treated using an amplitude-phase formulation for nonlinear modes, where the frequency and damping functions, as well as the invariant manifolds in the phase space, are unknowns to be determined. The formulation gives, without explicit integration of the underlying ordinary differential equation, access to the transient, the limit cycle, its period and stability. The process is illustrated for a model reduced to three normal modes of the air column

    Algebraic Structures of B-series

    Get PDF
    B-series are a fundamental tool in practical and theoretical aspects of numerical integrators for ordinary differential equations. A composition law for B-series permits an elegant derivation of order conditions, and a substitution law gives much insight into modified differential equations of backward error analysis. These two laws give rise to algebraic structures (groups and Hopf algebras of trees) that have recently received much attention also in the non-numerical literature. This article emphasizes these algebraic structures and presents interesting relationships among the

    Towards a unified linear kinetic transport model with the trace ion module for EIRENE

    Get PDF
    Linear kinetic Monte Carlo particle transport models are frequently employed in fusion plasma simulations to quantify atomic and surface effects on the main plasma flow dynamics. Separate codes are used for transport of neutral particles (incl. radiation) and charged particles (trace impurity ions). Integration of both modules into main plasma fluid solvers provides then self consistent solutions, in principle. The required interfaces are far from trivial, because rapid atomic processes in particular in the edge region of fusion plasmas require either smoothing and resampling, or frequent transfer of particles from one into the other Monte Carlo code. We propose a different scheme here, in which despite the inherently different mathematical form of kinetic equations for ions and neutrals (e.g. Fokker-Planck vs. Boltzmann collision integrals) both types of particle orbits can be integrated into one single code. We show that the approximations and shortcomings of this "single sourcing" concept (e.g., restriction to explicit ion drift orbit integration) can be fully tolerable in a wide range of typical fusion edge plasma conditions, and be overcompensated by the code-system simplicity, as well as by inherently ensured consistency in geometry (one single numerical grid only) and (the common) atomic and surface process modulesComment: 15 pages, 7 figure

    Generalized harmonic formulation in spherical symmetry

    Get PDF
    In this pedagogically structured article, we describe a generalized harmonic formulation of the Einstein equations in spherical symmetry which is regular at the origin. The generalized harmonic approach has attracted significant attention in numerical relativity over the past few years, especially as applied to the problem of binary inspiral and merger. A key issue when using the technique is the choice of the gauge source functions, and recent work has provided several prescriptions for gauge drivers designed to evolve these functions in a controlled way. We numerically investigate the parameter spaces of some of these drivers in the context of fully non-linear collapse of a real, massless scalar field, and determine nearly optimal parameter settings for specific situations. Surprisingly, we find that many of the drivers that perform well in 3+1 calculations that use Cartesian coordinates, are considerably less effective in spherical symmetry, where some of them are, in fact, unstable.Comment: 47 pages, 15 figures. v2: Minor corrections, including 2 added references; journal version
    • …
    corecore