1,136 research outputs found

    Fully Observable Non-deterministic Planning as Assumption-Based Reactive Synthesis

    Get PDF
    We contribute to recent efforts in relating two approaches to automatic synthesis, namely, automated planning and discrete reactive synthesis. First, we develop a declarative characterization of the standard “fairness” assumption on environments in non-deterministic planning, and show that strong-cyclic plans are correct solution concepts for fair environments. This complements, and arguably completes, the existing foundational work on non-deterministic planning, which focuses on characterizing (and computing) plans enjoying special “structural” properties, namely loopy but closed policy structures. Second, we provide an encoding suitable for reactive synthesis that avoids the naive exponential state space blowup. To do so, special care has to be taken to specify the fairness assumption on the environment in a succinct manner.Fil: D'ippolito, Nicolás Roque. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Rodriguez, Natalia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaFil: Sardina, Sebastian. RMIT University; Australi

    Contingent planning under uncertainty via stochastic satisfiability

    Get PDF
    We describe a new planning technique that efficiently solves probabilistic propositional contingent planning problems by converting them into instances of stochastic satisfiability (SSAT) and solving these problems instead. We make fundamental contributions in two areas: the solution of SSAT problems and the solution of stochastic planning problems. This is the first work extending the planning-as-satisfiability paradigm to stochastic domains. Our planner, ZANDER, can solve arbitrary, goal-oriented, finite-horizon partially observable Markov decision processes (POMDPs). An empirical study comparing ZANDER to seven other leading planners shows that its performance is competitive on a range of problems. © 2003 Elsevier Science B.V. All rights reserved

    The super-LHC

    Get PDF
    We review here the prospects of a long-term upgrade programme for the Large Hadron Collider (LHC), CERN laboratory's new proton-proton collider. The super-LHC, which is currently under evaluation and design, is expected to deliver of the order of ten times the statistics of the LHC. In addition to a non-technical summary of the principal physics arguments for the upgrade, I present a pedagogical introduction to the technological challenges on the accelerator and experimental fronts, and a review of the current status of the planning.Comment: To appear in Contemporary Physic

    Computational Results for Extensive-Form Adversarial Team Games

    Get PDF
    We provide, to the best of our knowledge, the first computational study of extensive-form adversarial team games. These games are sequential, zero-sum games in which a team of players, sharing the same utility function, faces an adversary. We define three different scenarios according to the communication capabilities of the team. In the first, the teammates can communicate and correlate their actions both before and during the play. In the second, they can only communicate before the play. In the third, no communication is possible at all. We define the most suitable solution concepts, and we study the inefficiency caused by partial or null communication, showing that the inefficiency can be arbitrarily large in the size of the game tree. Furthermore, we study the computational complexity of the equilibrium-finding problem in the three scenarios mentioned above, and we provide, for each of the three scenarios, an exact algorithm. Finally, we empirically evaluate the scalability of the algorithms in random games and the inefficiency caused by partial or null communication

    Bounded non-deterministic planning for multimedia adaptation

    Get PDF
    This paper proposes a novel combination of artificial intelligence planning and other techniques for improving decision-making in the context of multi-step multimedia content adaptation. In particular, it describes a method that allows decision-making (selecting the adaptation to perform) in situations where third-party pluggable multimedia conversion modules are involved and the multimedia adaptation planner does not know their exact adaptation capabilities. In this approach, the multimedia adaptation planner module is only responsible for a part of the required decisions; the pluggable modules make additional decisions based on different criteria. We demonstrate that partial decision-making is not only attainable, but also introduces advantages with respect to a system in which these conversion modules are not capable of providing additional decisions. This means that transferring decisions from the multi-step multimedia adaptation planner to the pluggable conversion modules increases the flexibility of the adaptation. Moreover, by allowing conversion modules to be only partially described, the range of problems that these modules can address increases, while significantly decreasing both the description length of the adaptation capabilities and the planning decision time. Finally, we specify the conditions under which knowing the partial adaptation capabilities of a set of conversion modules will be enough to compute a proper adaptation plan

    A Decoupling Principle for Simultaneous Localization and Planning Under Uncertainty in Multi-Agent Dynamic Environments

    Get PDF
    Simultaneous localization and planning for nonlinear stochastic systems under process and measurement uncertainties is a challenging problem. In its most general form, it is formulated as a stochastic optimal control problem in the space of feedback policies. The Hamilton-Jacobi-Bellman equation provides the theoretical solution of the optimal problem; but, as is typical of almost all nonlinear stochastic systems, optimally solving the problem is intractable. Moreover, even if an optimal solution was obtained, it would require centralized control, while multi-agent mobile robotic systems under dynamic environments require decentralized solutions. In this study, we aim for a theoretically sound solution for various modes of this problem, including the single-agent and multi-agent variations with perfect and imperfect state information, where the underlying state, control and observation spaces are continuous with discrete-time models. We introduce a decoupling principle for planning and control of multi-agent nonlinear stochastic systems based on a small noise asymptotics. Through this decoupling principle, under small noise, the design of the real-time feedback law can be decoupled from the off-line design of the nominal trajectory of the system. Further, for a multi-agent problem, the design of the feedback laws for different agents can be decoupled from each other, reducing the centralized problem to a decentralized problem requiring no communication during execution. The resulting solution is quantifiably near-optimal. We establish this result for all the above-mentioned variations, which results in the following variants: Trajectory-optimized Linear Quadratic Regulator (T-LQR), Multi-agent T-LQR (MT-LQR), Trajectory-optimized Linear Quadratic Gaussian (T-LQG), and Multi-agent T-LQG (MT-LQG). The decoupling principle provides the conditions under which a decentralized linear Gaussian system with a quadratic approximation of the cost, obtained by linearization around an optimally designed nominal trajectory can be utilized to control the nonlinear system. The resulting decentralized feedback solution at runtime, being decoupled with respect to the mobile agents, requires no communication between the agents during the execution phase. Moreover, the complexity of the solution vis-a-vis the computation of the nominal trajectory as well as the closed-loop gains is tractable with low polynomial orders of computation. Experimental implementation of the solution shows that the results hold for moderate levels of noise with high probability. Further optimizing the performance of this approach we show how to design a special cost function for the problem with imperfect state measurement that takes advantage of the fact that the estimation covariance of a linear Gaussian system is deterministic and not dependent on the observations. This design, which corresponds in our overall design to “belief space planning”, incorporates the consequently deterministic cost of the stochastic feedback system into the deterministic design of the nominal trajectory to obtain an optimal nominal trajectory with the best estimation performance. Then, it utilizes the T-LQG approach to design an optimal feedback law to track the designed nominal trajectory. This iterative approach can be used to further tune both the open loop as well as the decentralized feedback gain portions of the overall design. We also provide the multi-agent variant of this approach based on the MT-LQG method. Based on the near-optimality guarantees of the decoupling principle and the TLQG approach, we analyze the performance and correctness of a well-known heuristic in robotic path planning. We show that optimizing measures of the observability Gramian as a surrogate for estimation performance may provide irrelevant or misleading trajectories for planning under observation uncertainty. We then consider systems with non-Gaussian perturbations. An alternative heuristic method is proposed that aims for fast planning in belief space under non- Gaussian uncertainty. We provide a special design approach based on particle filters that results in a convex planning problem implemented via a model predictive control strategy in convex environments, and a locally convex problem in non-convex environments. The environment here refers to the complement of the region in Euclidean space that contains the obstacles or “no fly zones”. For non-convex dynamic environments, where the no-go regions change dynamically with time, we design a special form of an obstacle penalty function that incorporates non-convex time-varying constraints into the cost function, so that the decoupling principle still applies to these problems. However, similar to any constrained problem, the quality of the optimal nominal trajectory is dependent on the quality of the solution obtainable for the nonlinear optimization problem. We simulate our algorithms for each of the problems on various challenging situations, including for several nonlinear robotic models and common measurement models. In particular, we consider 2D and 3D dynamic environments for heterogeneous holonomic and non-holonomic robots, and range and bearing sensing models. Future research can potentially extend the results to more general situations including continuous-time models

    Web Service Composition Processes: A Comparative Study

    Full text link
    corecore