1,287 research outputs found

    Protection partagée pour les réseaux de transport multidomaines

    Full text link
    Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal

    Foutbestendige toekomstige internetarchitecturen

    Get PDF

    Robust Data Center Network Design using Space Division Multiplexing

    Get PDF
    With the ever-increasing demand for data transmission in our generation where Internet and cloud concepts play a vital role, it has become essential that we handle data in a most efficient way. A possible solution to overcome the capacity crunch problem which is so evident in future, is applications of Space Division Multiplexing, where we explore the remaining unused domain that is the spatial domain. Space Division Multiplexing using multi-core fibers (MCFs), and few-mode fibers (FMFs) has been studied in our work to enhance the data-carrying capacity of optical fibers while minimizing the transmission cost per bit. The objective of our work is to develop a path protection scheme to handle communication requests in data center (DC) networks using elastic optical networking and space division multiplexing (SDM). Our approach to this problem is to 1) determine a dedicated primary and backup path, 2) possible allocation of spectrum using the flex-grid fixed-SDM model, 3) choose the best possible modulation format to minimize the number of subcarriers needed for data transfer, 4) measure the cost of the resources required to handle the new requests. We propose to evaluate the developed Integer Linear Programming (ILP) formulation based on this scheme, considering the possibility of disasters. We study the impact of the design on the cost of the solution, hence explore whether it promotes significant resource savings

    Technology-related disasters:a survey towards disaster-resilient software defined networks

    Get PDF
    Resilience against disaster scenarios is essential to network operators, not only because of the potential economic impact of a disaster but also because communication networks form the basis of crisis management. COST RECODIS aims at studying measures, rules, techniques and prediction mechanisms for different disaster scenarios. This paper gives an overview of different solutions in the context of technology-related disasters. After a general overview, the paper focuses on resilient Software Defined Networks

    Multi-domain crankback operation for IP/MPLS & DWDM networks

    Get PDF
    Network carriers and operators have built and deployed a very wide range of networking technologies to meet their customers needs. These include ultra scalable fibre-optic backbone networks based upon dense wavelength division multiplexing (DWDM) solutions as well as advanced layer 2/3 IP multiprotocol label switching (MPLS) and Ethernet technologies as well. A range of networking control protocols has also been developed to implement service provisioning and management across these networks. As these infrastructures have been deployed, a range of new challenges have started to emerge. In particular, a major issue is that of provisioning connection services between networks running across different domain boundaries, e.g., administrative geographic, commercial, etc. As a result, many carriers are keenly interested in the design of multi-domain provisioning solutions and algorithms. Nevertheless, to date most such efforts have only looked at pre-configured, i.e., static, inter-domain route computation or more complex solutions based upon hierarchical routing. As such there is significant scope in developing more scalable and simplified multi-domain provisioning solutions. Moreover, it is here that crankback signaling offers much promise. Crankback makes use of active messaging techniques to compute routes in an iterative manner and avoid problematic resource-deficient links. However very few multi-domain crankback schemes have been proposed, leaving much room for further investigation. Along these lines, this thesis proposes crankback signaling solution for multi-domain IP/MPLS and DWDM network operation. The scheme uses a joint intra/inter-domain signaling strategy and is fully-compatible with the standardized resource reservation (RSVP-TE) protocol. Furthermore, the proposed solution also implements and advanced next-hop domain selection strategy to drive the overall crankback process. Finally the whole framework assumes realistic settings in which individual domains have full internal visibility via link-state routing protocols, e.g., open shortest path first traffic engineering (OSPF-TE), but limited \u27next-hop\u27 inter-domain visibility, e.g., as provided by inter-area or inter-autonomous system (AS) routing protocols. The performance of the proposed crankback solution is studied using software-based discrete event simulation. First, a range of multi-domain topologies are built and tested. Next, detailed simulation runs are conducted for a range of scenarios. Overall, the findings show that the proposed crankback solution is very competitive with hierarchical routing, in many cases even outperforming full mesh abstraction. Moreover the scheme maintains acceptable signaling overheads (owing to it dual inter/intra domain crankback design) and also outperforms existing multi-domain crankback algorithms.\u2
    • …
    corecore