121 research outputs found

    Routing UAVs to Co-Optimize Mission Effectiveness and Network Performance with Dynamic Programming

    Get PDF
    In support of the Air Force Research Laboratory\u27s (AFRL) vision of the layered sensing operations center, command and control intelligence surveillance and reconnaissance (C2ISR) more focus must be placed on architectures that support information systems, rather than just the information systems themselves. By extending the role of UAVs beyond simply intelligence, surveillance, and reconnaissance (ISR) operations and into a dual-role with networking operations we can better utilize our information assets. To achieve the goal of dual-role UAVs, a concrete approach to planning must be taken. This research defines a mathematical model and a non-trivial deterministic algorithmic approach to determining UAV placement to support ad-hoc network capability, while maintaining the valuable service of surveillance activities

    Optimization of intersatellite routing for real-time data download

    Get PDF
    The objective of this study is to develop a strategy to maximise the available bandwidth to Earth of a satellite constellation through inter-satellite links. Optimal signal routing is achieved by mimicking the way in which ant colonies locate food sources, where the 'ants' are explorative data packets aiming to find a near-optimal route to Earth. Demonstrating the method on a case-study of a space weather monitoring constellation; we show the real-time downloadable rate to Earth

    Remote Sensing Information Sciences Research Group, Santa Barbara Information Sciences Research Group, year 3

    Get PDF
    Research continues to focus on improving the type, quantity, and quality of information which can be derived from remotely sensed data. The focus is on remote sensing and application for the Earth Observing System (Eos) and Space Station, including associated polar and co-orbiting platforms. The remote sensing research activities are being expanded, integrated, and extended into the areas of global science, georeferenced information systems, machine assissted information extraction from image data, and artificial intelligence. The accomplishments in these areas are examined

    Distributed approaches for coverage missions with multiple heterogeneous UAVs for coastal areas.

    Get PDF
    This Thesis focuses on a high-level framework proposal for heterogeneous aerial, fixed wing teams of robots, which operate in complex coastal areas. Recent advances in the computational capabilities of modern processors along with the decrement of small scale aerial platform manufacturing costs, have given researchers the opportunity to propose efficient and low-cost solutions to a wide variety of problems. Regarding marine sciences and more generally coastal or sea operations, the use of aerial robots brings forth a number of advantages, including information redundancy and operator safety. This Thesis initially deals with complex coastal decomposition in relation with a vehicles’ on-board sensor. This decomposition decreases the computational complexity of planning a flight path, while respecting various aerial or ground restrictions. The sensor-based area decomposition also facilitates a team-wide heterogeneous solution for any team of aerial vehicles. Then, it proposes a novel algorithmic approach of partitioning any given complex area, for an arbitrary number of Unmanned Aerial Vehicles (UAV). This partitioning schema, respects the relative flight autonomy capabilities of the robots, providing them a corresponding region of interest. In addition, a set of algorithms is proposed for obtaining coverage waypoint plans for those areas. These algorithms are designed to afford the non-holonomic nature of fixed-wing vehicles and the restrictions their dynamics impose. Moreover, this Thesis also proposes a variation of a well-known path tracking algorithm, in order to further reduce the flight error of waypoint following, by introducing intermediate waypoints and providing an autopilot parametrisation. Finally, a marine studies test case of buoy information extraction is presented, demonstrating in that manner the flexibility and modular nature of the proposed framework.Esta tesis se centra en la propuesta de un marco de alto nivel para equipos heterogéneos de robots de ala fija que operan en áreas costeras complejas. Los avances recientes en las capacidades computacionales de los procesadores modernos, junto con la disminución de los costes de fabricación de plataformas aéreas a pequeña escala, han brindado a los investigadores la oportunidad de proponer soluciones eficientes y de bajo coste para enfrentar un amplio abanico de cuestiones. Con respecto a las ciencias marinas y, en términos más generales, a las operaciones costeras o marítimas, el uso de robots aéreos conlleva una serie de ventajas, incluidas la redundancia de la información y la seguridad del operador. Esta tesis trata inicialmente con la descomposición de áreas costeras complejas en relación con el sensor a bordo de un vehículo. Esta descomposición disminuye la complejidad computacional de la planificación de una trayectoria de vuelo, al tiempo que respeta varias restricciones aéreas o terrestres. La descomposición del área basada en sensores también facilita una solución heterogénea para todo el equipo para cualquier equipo de vehículos aéreos. Luego, propone un novedoso enfoque algorítmico de partición de cualquier área compleja dada, para un número arbitrario de vehículos aéreos no tripulados (UAV). Este esquema de partición respeta las capacidades relativas de autonomía de vuelo de los robots, proporcionándoles una región de interés correspondiente. Además, se propone un conjunto de algoritmos para obtener planes de puntos de cobertura para esas áreas. Estos algoritmos están diseñados teniendo en cuenta la naturaleza no holonómica de los vehículos de ala fija y las restricciones que impone su dinámica. En ese sentido, esta Tesis también ofrece una variación de un algoritmo de seguimiento de rutas bien conocido, con el fin de reducir aún más el error de vuelo del siguiente punto de recorrido, introduciendo puntos intermedios y proporcionando una parametrización del piloto automático. Finalmente, se presenta un caso de prueba de estudios marinos de extracción de información de boyas, que demuestra de esa manera la flexibilidad y el carácter modular del marco propuesto

    Coordinated Sensor-Based Area Coverage and Cooperative Localization of a Heterogeneous Fleet of Autonomous Surface Vessels (ASVs)

    Get PDF
    Sensor coverage with fleets of robots is a complex task requiring solutions to localization, communication, navigation and basic sensor coverage. Sensor coverage of large areas is a problem that occurs in a variety of different environments from terrestrial to aerial to aquatic. In this thesis we consider the aquatic version of the problem. Given a known aquatic environment and collection of aquatic surface vehicles with known kinematic and dynamic constraints, how can a fleet of vehicles be deployed to provide sensor coverage of the surface of the body of water? Rather than considering this problem in general, in this work we consider the problem given a specific fleet consisting of one very well equipped robot aided by a number of smaller, less well equipped devices that must operate in close proximity to the main robot. A boustrophedon decomposition algorithm is developed that incorporates the motion, sensing and communication constraints imposed by the autonomous fleet. Solving the coverage problem leads to a localization/communication problem. A critical problem for a group of autonomous vehicles is ensuring that the collection operates within a common reference frame. Here we consider the problem of localizing a heterogenous collection of aquatic surface vessels within a global reference frame. We assume that one vessel -- the mother robot -- has access to global position data of high accuracy, while the other vessels -- the child robots -- utilize limited onboard sensors and sophisticated sensors on board the mother robot to localize themselves. This thesis provides details of the design of the elements of the heterogeneous fleet including the sensors and sensing algorithms along with the communication strategy used to localize all elements of the fleet within a global reference frame. Details of the robot platforms to be used in implementing a solution are also described. Simulation of the approach is used to demonstrate the effectiveness of the algorithm, and the algorithm and its components are evaluated using a fleet of ASVs

    DYNAMIC ROUTING WITH CROSS-LAYER ADAPTATIONS FOR MULTI-HOP WIRELESS NETWORKS

    Get PDF
    In recent years there has been a proliferation of research on a number of wireless multi-hop networks that include mobile ad-hoc networks, wireless mesh networks, and wireless sensor networks (WSNs). Routing protocols in such networks are of- ten required to meet design objectives that include a combination of factors such as throughput, delay, energy consumption, network lifetime etc. In addition, many mod- ern wireless networks are equipped with multi-channel radios, where channel selection plays an important role in achieving the same design objectives. Consequently, ad- dressing the routing problem together with cross-layer adaptations such as channel selection is an important issue in such networks. In this work, we study the joint routing and channel selection problem that spans two domains of wireless networks. The first is a cost-effective and scalable wireless-optical access networks which is a combination of high-capacity optical access and unethered wireless access. The joint routing and channel selection problem in this case is addressed under an anycasting paradigm. In addition, we address two other problems in the context of wireless- optical access networks. The first is on optimal gateway placement and network planning for serving a given set of users. And the second is the development of an analytical model to evaluate the performance of the IEEE 802.11 DCF in radio-over- fiber wireless LANs. The second domain involves resource constrained WSNs where we focus on route and channel selection for network lifetime maximization. Here, the problem is further exacerbated by distributed power control, that introduces addi- tional design considerations. Both problems involve cross-layer adaptations that must be solved together with routing. Finally, we present an analytical model for lifetime calculation in multi-channel, asynchronous WSNs under optimal power control

    Intelligent-Reflecting-Surface-Assisted UAV Communications for 6G Networks

    Full text link
    In 6th-Generation (6G) mobile networks, Intelligent Reflective Surfaces (IRSs) and Unmanned Aerial Vehicles (UAVs) have emerged as promising technologies to address the coverage difficulties and resource constraints faced by terrestrial networks. UAVs, with their mobility and low costs, offer diverse connectivity options for mobile users and a novel deployment paradigm for 6G networks. However, the limited battery capacity of UAVs, dynamic and unpredictable channel environments, and communication resource constraints result in poor performance of traditional UAV-based networks. IRSs can not only reconstruct the wireless environment in a unique way, but also achieve wireless network relay in a cost-effective manner. Hence, it receives significant attention as a promising solution to solve the above challenges. In this article, we conduct a comprehensive survey on IRS-assisted UAV communications for 6G networks. First, primary issues, key technologies, and application scenarios of IRS-assisted UAV communications for 6G networks are introduced. Then, we put forward specific solutions to the issues of IRS-assisted UAV communications. Finally, we discuss some open issues and future research directions to guide researchers in related fields

    Energy-Aware Resource Optimization for Improved URLLC in Multi-hop Integrated Aerial Terrestrial Networks

    Get PDF
    The development of futuristic wireless infrastructure necessitates low power consumption, high relia- bility, and massive connectivity. One of the most promising solutions to address these requirements is the integration of aerial base station (ABS) based communication systems that employ both in the air (aerial) and on the ground (terrestrial) components. This integration enhances line of sight connections, enabling the fulfillment of escalating quality-of-service (QoS) demands. This article examines the problem of resource allocation in ABS assisted multi-hop wireless networks. We investigate a joint optimization problem that involves subcarrier (SC) assignment, power allocation, and blocklength allocation, subject to delay, reliability, and QoS constraints to improve the sum-rate under the finite blocklength (FBL) regime. We propose an approach for SC allocation and selection of cooperative ABSs based on matching theory. Subsequently, we employ an alternating optimization method to propose a novel bisection-based low-complexity adaptation (BLCA) algorithm to optimize the resource allocation policy. This algorithm includes a two-step projected gradient descent-based strategy to optimize the power allocation on each SC using dynamic and geometric programming. Furthermore, we examine flexible blocklength and power allocation use cases under the next generation of multiple access techniques. Monte-Carlo simulations validate that the proposed algorithmic solution significantly achieves a near-optimal solution while requiring 1600 times less computational cost compared to benchmarks in its counterparts

    Experiments in real time path planning for a small unmanned helicopter using mixed integer linear programming

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2003.Includes bibliographical references (leaves 56-57).This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.We use mathematical programming to perform simulated and actual flight experiments with the MIT autonomous helicopter platform. The experimental platform mechanical hardware, avionics and software architecture are described. Mixed Integer Linear Programming formulations for guidance experiments in obstacle avoidance and threat evasion are presented. Results from an experimental flight and flight simulations are presented and discussed. The performance of the GNU Linear Programming Kit (GLPK) software library, used in the experiments, is examined. The solvers internal branching heuristic, as it pertains to our formulations, is illustrated graphically. Finally, we discuss ways to improve the solvers performance by adding stronger objective bounds to the subproblems it creates while applying the branch and bound algorithm.by Ioannis Martinos.S.M

    Airborne Directional Networking: Topology Control Protocol Design

    Get PDF
    This research identifies and evaluates the impact of several architectural design choices in relation to airborne networking in contested environments related to autonomous topology control. Using simulation, we evaluate topology reconfiguration effectiveness using classical performance metrics for different point-to-point communication architectures. Our attention is focused on the design choices which have the greatest impact on reliability, scalability, and performance. In this work, we discuss the impact of several practical considerations of airborne networking in contested environments related to autonomous topology control modeling. Using simulation, we derive multiple classical performance metrics to evaluate topology reconfiguration effectiveness for different point-to-point communication architecture attributes for the purpose of qualifying protocol design elements
    corecore