101 research outputs found

    Optimized state feedback regulation of 3DOF helicopter system via extremum seeking

    Get PDF
    In this paper, an optimized state feedback regulation of a 3 degree of freedom (DOF) helicopter is designed via extremum seeking (ES) technique. Multi-parameter ES is applied to optimize the tracking performance via tuning State Vector Feedback with Integration of the Control Error (SVFBICE). Discrete multivariable version of ES is developed to minimize a cost function that measures the performance of the controller. The cost function is a function of the error between the actual and desired axis positions. The controller parameters are updated online as the optimization takes place. This method significantly decreases the time in obtaining optimal controller parameters. Simulations were conducted for the online optimization under both fixed and varying operating conditions. The results demonstrate the usefulness of using ES for preserving the maximum attainable performance

    An Overview of Recent Progress in the Study of Distributed Multi-agent Coordination

    Get PDF
    This article reviews some main results and progress in distributed multi-agent coordination, focusing on papers published in major control systems and robotics journals since 2006. Distributed coordination of multiple vehicles, including unmanned aerial vehicles, unmanned ground vehicles and unmanned underwater vehicles, has been a very active research subject studied extensively by the systems and control community. The recent results in this area are categorized into several directions, such as consensus, formation control, optimization, task assignment, and estimation. After the review, a short discussion section is included to summarize the existing research and to propose several promising research directions along with some open problems that are deemed important for further investigations

    Robust decentralised load frequency control for interconnected time delay power systems using sliding mode techniques

    Get PDF
    Based on a sliding mode control, a multi-area decentralised load frequency control power system with time-varying delays and non-linear perturbations is designed in this study. Due to the destabilising effect of delay on the global system, it is necessary to design a control system to accommodate vast time delays so as to manage the deviation in frequency and interchange power. By taking advantage of the system structure and disturbance bounds, robustness is improved. A sliding surface is designed, and the stability of the corresponding sliding motion is analysed based on Lyapunov–Razumikhin function. A delay dependent decentralised sliding mode control is synthesised to drive the system to the sliding surface and maintain a sliding motion afterwards. The obtained results are applied to a two-area interconnected power system to demonstrate the effectiveness of the proposed method

    Comprehensive review on controller for leader-follower robotic system

    Get PDF
    985-1007This paper presents a comprehensive review of the leader-follower robotics system. The aim of this paper is to find and elaborate on the current trends in the swarm robotic system, leader-follower, and multi-agent system. Another part of this review will focus on finding the trend of controller utilized by previous researchers in the leader-follower system. The controller that is commonly applied by the researchers is mostly adaptive and non-linear controllers. The paper also explores the subject of study or system used during the research which normally employs multi-robot, multi-agent, space flying, reconfigurable system, multi-legs system or unmanned system. Another aspect of this paper concentrates on the topology employed by the researchers when they conducted simulation or experimental studies

    Adaptive and Optimal Motion Control of Multi-UAV Systems

    Get PDF
    This thesis studies trajectory tracking and coordination control problems for single and multi unmanned aerial vehicle (UAV) systems. These control problems are addressed for both quadrotor and fixed-wing UAV cases. Despite the fact that the literature has some approaches for both problems, most of the previous studies have implementation challenges on real-time systems. In this thesis, we use a hierarchical modular approach where the high-level coordination and formation control tasks are separated from low-level individual UAV motion control tasks. This separation helps efficient and systematic optimal control synthesis robust to effects of nonlinearities, uncertainties and external disturbances at both levels, independently. The modular two-level control structure is convenient in extending single-UAV motion control design to coordination control of multi-UAV systems. Therefore, we examine single quadrotor UAV trajectory tracking problems to develop advanced controllers compensating effects of nonlinearities and uncertainties, and improving robustness and optimality for tracking performance. At fi rst, a novel adaptive linear quadratic tracking (ALQT) scheme is developed for stabilization and optimal attitude control of the quadrotor UAV system. In the implementation, the proposed scheme is integrated with Kalman based reliable attitude estimators, which compensate measurement noises. Next, in order to guarantee prescribed transient and steady-state tracking performances, we have designed a novel backstepping based adaptive controller that is robust to effects of underactuated dynamics, nonlinearities and model uncertainties, e.g., inertial and rotational drag uncertainties. The tracking performance is guaranteed to utilize a prescribed performance bound (PPB) based error transformation. In the coordination control of multi-UAV systems, following the two-level control structure, at high-level, we design a distributed hierarchical (leader-follower) 3D formation control scheme. Then, the low-level control design is based on the optimal and adaptive control designs performed for each quadrotor UAV separately. As particular approaches, we design an adaptive mixing controller (AMC) to improve robustness to varying parametric uncertainties and an adaptive linear quadratic controller (ALQC). Lastly, for planar motion, especially for constant altitude flight of fixed-wing UAVs, in 2D, a distributed hierarchical (leader-follower) formation control scheme at the high-level and a linear quadratic tracking (LQT) scheme at the low-level are developed for tracking and formation control problems of the fixed-wing UAV systems to examine the non-holonomic motion case. The proposed control methods are tested via simulations and experiments on a multi-quadrotor UAV system testbed
    corecore