21 research outputs found

    Optimal Disturbances Rejection Control for Autonomous Underwater Vehicles in Shallow Water Environment

    Get PDF
    To deal with the disturbances of wave and current in the heading control of Autonomous Underwater Vehicles (AUVs), an optimal disturbances rejection control (ODRC) approach for AUVs in shallow water environment is designed to realize this application. Based on the quadratic optimal control theory, the AUVs heading control problem can be expressed as a coupled two-point boundary value (TPBV) problem. Using a recently developed successive approximation approach, the coupled TPBV problem is transformed into solving a decoupled linear state equation sequence and a linear adjoint equation sequence. By iteratively solving the two equation sequences, the approximate ODRC law is obtained. A Luenberger observer is constructed to estimate wave disturbances. Simulation is provided to demonstrate the effectiveness of the presented approach

    Control Of Nonh=holonomic Systems

    Get PDF
    Many real-world electrical and mechanical systems have velocity-dependent constraints in their dynamic models. For example, car-like robots, unmanned aerial vehicles, autonomous underwater vehicles and hopping robots, etc. Most of these systems can be transformed into a chained form, which is considered as a canonical form of these nonholonomic systems. Hence, study of chained systems ensure their wide applicability. This thesis studied the problem of continuous feed-back control of the chained systems while pursuing inverse optimality and exponential convergence rates, as well as the feed-back stabilization problem under input saturation constraints. These studies are based on global singularity-free state transformations and controls are synthesized from resulting linear systems. Then, the application of optimal motion planning and dynamic tracking control of nonholonomic autonomous underwater vehicles is considered. The obtained trajectories satisfy the boundary conditions and the vehicles\u27 kinematic model, hence it is smooth and feasible. A collision avoidance criteria is set up to handle the dynamic environments. The resulting controls are in closed forms and suitable for real-time implementations. Further, dynamic tracking controls are developed through the Lyapunov second method and back-stepping technique based on a NPS AUV II model. In what follows, the application of cooperative surveillance and formation control of a group of nonholonomic robots is investigated. A designing scheme is proposed to achieves a rigid formation along a circular trajectory or any arbitrary trajectories. The controllers are decentralized and are able to avoid internal and external collisions. Computer simulations are provided to verify the effectiveness of these designs

    A new coordination framework for multi-UAV formation control

    Get PDF
    Unmanned Aerial Vehicles (UAVs) have become very popular in the last few decades. Nowadays these vehicles are used for both civilian and military applications which are dull, dirty and dangerous for humans. The remarkable advances in materials, electronics, sensors, actuators and batteries enable researchers to design more durable, capable, smart and cheaper UAVs. Consequently, a significant amount of research effort has been devoted to the design of UAVs with intelligent navigation and control systems. There are certain applications where a single UAV can not perform adequately. However, carrying out such tasks with a fleet of UAVs in some geometric pattern or formation can be more powerful and more efficient. This thesis focuses on a new coordination scheme that enables formation control of quadrotor type UAVs. Coordination of quadrotors is achieved using a virtual structure approach where orthogonal projections of quadrotors on a virtual plane are utilized to define coordination forces. This plane implies planar spring forces acting between the vehicles. Virtual springs are also augmented with dampers to suppress oscillatory motions. While the coordination among the aerial vehicles is achieved on a virtual plane, altitude control for each vehicle is designed independently. This increases maneuvering capability of each quadrotor along the vertical direction. Due to their robustness to the external disturbances such as wind gusts, integral backstepping controllers are designed to control attitude and position dynamics of individual quadrotors. Several coordinated task scenarios are presented and the performance of the proposed formation control technique is assessed by several simulations where three and five quadrotors are employed. Simulation results are quite promising

    A COLLISION AVOIDANCE SYSTEM FOR AUTONOMOUS UNDERWATER VEHICLES

    Get PDF
    The work in this thesis is concerned with the development of a novel and practical collision avoidance system for autonomous underwater vehicles (AUVs). Synergistically, advanced stochastic motion planning methods, dynamics quantisation approaches, multivariable tracking controller designs, sonar data processing and workspace representation, are combined to enhance significantly the survivability of modern AUVs. The recent proliferation of autonomous AUV deployments for various missions such as seafloor surveying, scientific data gathering and mine hunting has demanded a substantial increase in vehicle autonomy. One matching requirement of such missions is to allow all the AUV to navigate safely in a dynamic and unstructured environment. Therefore, it is vital that a robust and effective collision avoidance system should be forthcoming in order to preserve the structural integrity of the vehicle whilst simultaneously increasing its autonomy. This thesis not only provides a holistic framework but also an arsenal of computational techniques in the design of a collision avoidance system for AUVs. The design of an obstacle avoidance system is first addressed. The core paradigm is the application of the Rapidly-exploring Random Tree (RRT) algorithm and the newly developed version for use as a motion planning tool. Later, this technique is merged with the Manoeuvre Automaton (MA) representation to address the inherent disadvantages of the RRT. A novel multi-node version which can also address time varying final state is suggested. Clearly, the reference trajectory generated by the aforementioned embedded planner must be tracked. Hence, the feasibility of employing the linear quadratic regulator (LQG) and the nonlinear kinematic based state-dependent Ricatti equation (SDRE) controller as trajectory trackers are explored. The obstacle detection module, which comprises of sonar processing and workspace representation submodules, is developed and tested on actual sonar data acquired in a sea-trial via a prototype forward looking sonar (AT500). The sonar processing techniques applied are fundamentally derived from the image processing perspective. Likewise, a novel occupancy grid using nonlinear function is proposed for the workspace representation of the AUV. Results are presented that demonstrate the ability of an AUV to navigate a complex environment. To the author's knowledge, it is the first time the above newly developed methodologies have been applied to an A UV collision avoidance system, and, therefore, it is considered that the work constitutes a contribution of knowledge in this area of work.J&S MARINE LT
    corecore