22 research outputs found

    Design and Development of a Twisted String Exoskeleton Robot for the Upper Limb

    Get PDF
    High-intensity and task-specific upper-limb treatment of active, highly repetitive movements are the effective approaches for patients with motor disorders. However, with the severe shortage of medical service in the United States and the fact that post-stroke survivors can continue to incur significant financial costs, patients often choose not to return to the hospital or clinic for complete recovery. Therefore, robot-assisted therapy can be considered as an alternative rehabilitation approach because the similar or better results as the patients who receive intensive conventional therapy offered by professional physicians.;The primary objective of this study was to design and fabricate an effective mobile assistive robotic system that can provide stroke patients shoulder and elbow assistance. To reduce the size of actuators and to minimize the weight that needs to be carried by users, two sets of dual twisted-string actuators, each with 7 strands (1 neutral and 6 effective) were used to extend/contract the adopted strings to drive the rotational movements of shoulder and elbow joints through a Bowden cable mechanism. Furthermore, movements of non-disabled people were captured as templates of training trajectories to provide effective rehabilitation.;The specific aims of this study included the development of a two-degree-of-freedom prototype for the elbow and shoulder joints, an adaptive robust control algorithm with cross-coupling dynamics that can compensate for both nonlinear factors of the system and asynchronization between individual actuators as well as an approach for extracting the reference trajectories for the assistive robotic from non-disabled people based on Microsoft Kinect sensor and Dynamic time warping algorithm. Finally, the data acquisition and control system of the robot was implemented by Intel Galileo and XILINX FPGA embedded system

    Multimodal series elastic actuator for human-machine interaction with applications in robot-aided rehabilitation

    Get PDF
    Series elastic actuators (SEAs) are becoming an elemental building block in collaborative robotic systems. They introduce an elastic element between the mechanical drive and the end-effector, making otherwise rigid structures compliant when in contact with humans. Topologically, SEAs are more amenable to accurate force control than classical actuation techniques, as the elastic element may be used to provide a direct force estimate. The compliant nature of SEAs provides the potential to be applied in robot-aided rehabilitation. This thesis proposes the design of a novel SEA to be used in robot-aided musculoskeletal rehabilitation. An active disturbance rejection controller is derived and experimentally validated and multiobjective optimization is executed to tune the controller for best performance in human-machine interaction. This thesis also evaluates the constrained workspaces for individuals experiencing upper-limb musculoskeletal disorders. This evaluation can be used as a tool to determine the kinematic structure of devices centred around the novel SEA

    Human Motor Control and the Design and Control of Backdriveable Actuators for Human-Robot Interaction

    Full text link
    The design of the control and hardware systems for a robot intended for interaction with a human user can profit from a critical analysis of the human neuromotor system and human biomechanics. The primary observation to be made about the human control and ``hardware’’ systems is that they work well together, perhaps because they were designed for each other. Despite the limited force production and elasticity of muscle, and despite slow information transmission, the sensorimotor system is adept at an impressive range of motor behaviors. In this thesis I present three explorations on the manners in which the human and hardware systems work together, hoping to inform the design of robots suitable for human-robot interaction. First, I used the serial reaction time (SRT) task with cuing from lights and motorized keys to assess the relative contribution of visual and haptic stimuli to the formation of motor and perceptual memories. Motorized keys were used to deliver brief pulse-like displacements to the resting fingers, with the expectation that the proximity and similarity of these cues to the response motor actions (finger-activated key-presses) would strengthen the motor memory trace in particular. Error rate results demonstrate that haptic cues promote motor learning over perceptual learning. The second exploration involves the design of an actuator specialized for human-robot interaction. Like muscle, it features series elasticity and thus displays good backdrivability. The elasticity arises from the use of a compressible fluid while hinged rigid plates are used to convert fluid power into mechanical power. I also propose impedance control with dynamics compensation to further reduce the driving-point impedance. The controller is robust to all kinds of uncertainties. The third exploration involves human control in interaction with the environment. I propose a framework that accommodates delays and does not require an explicit model of the musculoskeletal system and environment. Instead, loads from the biomechanics and coupled environment are estimated using the relationship between the motor command and its responses. Delays inherent in sensory feedback are accommodated by taking the form of the Smith predictor. Agreements between simulation results and empirical movements suggests that the framework is viable.PhDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120675/1/gloryn_1.pd

    Improving Automated Operations of Heavy-Duty Manipulators with Modular Model-Based Control Design

    Get PDF
    The rapid development of robotization and automation in mobile working machines aims to increase productivity and safety in many industrial sectors. In heavy-duty applications, hydraulically actuated manipulators are the common solution due to their large power-to-weight ratio. As hydraulic systems can exhibit nonlinear dynamic behavior, automated operations with closed-loop control become challenging. In industrial applications, the dexterity of operations for manipulators is ensured by providing interfaces to equip product variants with different tool attachments. By considering these domain-specific tool attachments for heavy-duty hydraulic manipulators (HHMs), the autonomous robotic operating development for all product variants might be a time-consuming process. This thesis aims to develop a modular nonlinear model-based (NMB) control method for HHMs to enable systematic NMB model reuse and control system modularity across different HHM product variants with actuators and tool attachments. Equally importantly, the properties of NMB control are used to improve the high-performance control for multi degrees-of-freedom robotic HHMs, as rigorously stability-guaranteed control systems have been shown to provide superior performance. To achieve these objectives, four research problems (RPs) on HHM controls are addressed. The RPs are focused on damping control methods in underactuated tool attachments, compensating for static actuator nonlinearities, and, equally significantly, improving overall control performance. The fourth RP is introduced for hydraulic series elastic actuators (HSEAs) in HHM applications, which can be regarded as supplementing NMB control with the aim of improving force controllability. Six publications are presented to investigate the RPs in this thesis. The control development focus was on modular NMB control design for HHMs equipped with different actuators and tool attachments consisting of passive and actuated joints. The designed control methods were demonstrated on a full-size HHM and a novel HSEA concept in a heavy-duty experimental setup. The results verified that modular control design for HHM systems can be used to decrease the modifications required to use the manipulator with different tool attachments and floating-base environments

    Bio-Inspired Robotics

    Get PDF
    Modern robotic technologies have enabled robots to operate in a variety of unstructured and dynamically-changing environments, in addition to traditional structured environments. Robots have, thus, become an important element in our everyday lives. One key approach to develop such intelligent and autonomous robots is to draw inspiration from biological systems. Biological structure, mechanisms, and underlying principles have the potential to provide new ideas to support the improvement of conventional robotic designs and control. Such biological principles usually originate from animal or even plant models, for robots, which can sense, think, walk, swim, crawl, jump or even fly. Thus, it is believed that these bio-inspired methods are becoming increasingly important in the face of complex applications. Bio-inspired robotics is leading to the study of innovative structures and computing with sensory–motor coordination and learning to achieve intelligence, flexibility, stability, and adaptation for emergent robotic applications, such as manipulation, learning, and control. This Special Issue invites original papers of innovative ideas and concepts, new discoveries and improvements, and novel applications and business models relevant to the selected topics of ``Bio-Inspired Robotics''. Bio-Inspired Robotics is a broad topic and an ongoing expanding field. This Special Issue collates 30 papers that address some of the important challenges and opportunities in this broad and expanding field

    System Configuration and Control Using Hydraulic Transformer

    Get PDF
    University of Minnesota Ph.D. dissertation. May 2018. Major: Mechanical Engineering. Advisor: Perry Li. 1 computer file (PDF); xii, 294 pages.Hydraulic power transmission offers multiple benefits over competing technologies including an order of magnitude higher power density than electric systems, relatively low cost, fast response, and flexible packaging. Hydraulics are often used in high-performance mobile robots that demand power, precision, and compactness. However, typical hydraulic systems suffer from low system efficiency from the wide usage of throttle valves. The research described in this dissertation focuses on developing hydraulic transformers that transforms hydraulic power from one set of pressure and flow to the other set of pressure and flow to replace throttle valves such that a compact and efficient fluid power system can be realized. A dynamic model capable of capturing operating characteristics and losses is developed to establish a quantitative comparison between two major designs of the hydraulic transformer. A traditional design where a pump and motor are coupled together in a single package is chosen for the research. This design has three possible configurations with unique operating characteristics, and if these configuration modes can be switched, the resulting transformer is shown to be more compact and efficient. A trajectory tracking controller for a cylinder and force controller for a hydraulic human power amplifier is developed to demonstrate potential applications for the hydraulic transformer. The controller developed proves that utilizing hydraulic transformer need not sacrifice the control performance. Control methodologies ensuring efficiency of the transformer driven system are developed. Transformer operating speed is optimized to minimize the power loss through the transformer. Transformer configuration is switched actively to operate the transformer in its most optimal mode. These methods further improve the efficiency benefit of using the transformer. A hydraulic transformer system utilizing developed controllers compared against a throttle valve system tracking a trajectory with various loading conditions reveals that transformer system can achieve an efficiency of 81.2% which is more than threefold increase over the throttling system with an efficiency of 26.2%. This efficiency improvement is possible with the ability of a transformer to capture regenerative energy to reduce the net energy consumption. This dissertation successfully presents the controller development for a hydraulic transformer that captures both precision and efficiency
    corecore