44 research outputs found

    Robust trajectory tracking control for unmanned surface vessels under motion constraints and environmental disturbances

    Get PDF
    To achieve a fully autonomous navigation for unmanned surface vessels (USVs), a robust control capability is essential. The control of USVs in complex maritime environments is rather challenging as numerous system uncertainties and environmental influences affect the control performance. This paper therefore investigates the trajectory tracking control problem for USVs with motion constraints and environmental disturbances. Two different controllers are proposed to achieve the task. The first approach is mainly based on the backstepping technique augmented by a virtual system to compensate for the disturbance and an auxiliary system to bound the input in the saturation limit. The second control scheme is mainly based on the normalisation technique, with which the bound of the input can be limited in the constraints by tuning the control parameters. The stability of the two control schemes is demonstrated by the Lyapunov theory. Finally, simulations are conducted to verify the effectiveness of the proposed controllers. The introduced solutions enable USVs to follow complex trajectories in an adverse environment with varying ocean currents

    Automatic Control and Routing of Marine Vessels

    Get PDF
    Due to the intensive development of the global economy, many problems are constantly emerging connected to the safety of ships’ motion in the context of increasing marine traffic. These problems seem to be especially significant for the further development of marine transportation services, with the need to considerably increase their efficiency and reliability. One of the most commonly used approaches to ensuring safety and efficiency is the wide implementation of various automated systems for guidance and control, including such popular systems as marine autopilots, dynamic positioning systems, speed control systems, automatic routing installations, etc. This Special Issue focuses on various problems related to the analysis, design, modelling, and operation of the aforementioned systems. It covers such actual problems as tracking control, path following control, ship weather routing, course keeping control, control of autonomous underwater vehicles, ship collision avoidance. These problems are investigated using methods such as neural networks, sliding mode control, genetic algorithms, L2-gain approach, optimal damping concept, fuzzy logic and others. This Special Issue is intended to present and discuss significant contemporary problems in the areas of automatic control and the routing of marine vessels

    Path following of an underactuated AUV based on fuzzy backstepping sliding mode control

    No full text
    This paper addresses the path following problem of an underactuated autonomous underwater vehicle (AUV) with the aim of dealing with parameter uncertainties and current disturbances. An adaptive robust control system was proposed by employing fuzzy logic, backstepping and sliding mode control theory. Fuzzy logic theory is adopted to approximate unknown system function, and the controller was designed by combining sliding mode control with backstepping thought. Firstly, the longitudinal speed was controlled, then the yaw angle was made as input of path following error to design the calm function and the change rate of path parameters. The controller stability was proved by Lyapunov stable theory. Simulation and outfield tests were conducted and the results showed that the controller is of excellent adaptability and robustness in the presence of parameter uncertainties and external disturbances. It is also shown to be able to avoid the chattering of AUV actuator

    Modeling and Identification of Podded Propulsion Unmanned Surface Vehicle and Its Course Control Research

    Get PDF
    The response model of podded propulsion unmanned surface vehicle (USV) is established and identified; then considering the USV has characteristic of high speed, the course controller with fast convergence speed is proposed. The idea of MMG separate modeling is used to establish three-DOF planar motion model of the podded propulsion USV, and then the model is simplified as a response model. Then based on field experiments, the parameters of the response model are obtained by the method of system identification. Unlike ordinary ships, USV has the advantages of fast speed and small size, so the controller needs fast convergence speed and strong robustness. Based on the theory of multimode control, a fast nonsingular terminal sliding mode (FNTSM) course controller is proposed. In order to reduce the chattering of system, disturbance observer is used to compensate the disturbance to reduce the control gain and RBF neural network is applied to approximate the symbolic function. At the same time, fuzzy algorithm is employed to realize the mode soft switching, which avoids the unnecessary chattering when the mode is switched. Finally the rapidity and robustness of the proposed control approach are demonstrated by simulations and comparison studies

    Fuzzy-Based Optimal Adaptive Line-of-Sight Path Following for Underactuated Unmanned Surface Vehicle with Uncertainties and Time-Varying Disturbances

    Get PDF
    This paper investigates the path following control problem for an underactuated unmanned surface vehicle (USV) in the presence of dynamical uncertainties and time-varying external disturbances. Based on fuzzy optimization algorithm, an improved adaptive line-of-sight (ALOS) guidance law is proposed, which is suitable for straight-line and curve paths. On the basis of guidance information provided by LOS, a three-degree-of-freedom (DOF) dynamic model of an underactuated USV has been used to design a practical path following controller. The controller is designed by combining backstepping method, neural shunting model, neural network minimum parameter learning method, and Nussbaum function. Neural shunting model is used to solve the problem of “explosion of complexity,” which is an inherent illness of backstepping algorithm. Meanwhile, a simpler neural network minimum parameter learning method than multilayer neural network is employed to identify the uncertainties and time-varying external disturbances. In particular, Nussbaum function is introduced into the controller design to solve the problem of unknown control gain coefficient. And much effort is made to obtain the stability for the closed-loop control system, using the Lyapunov stability theory. Simulation experiments demonstrate the effectiveness and reliability of the improved LOS guidance algorithm and the path following controller

    Straight-line path following for asymmetric unmanned platform with disturbance estimation

    Get PDF
    The problem of straight-line path following for asymmetric unmanned platform exposed to unknown disturbances was addressed in this paper. The mathematical model of asymmetric unmanned platform was established and the inputs in sway and yaw directions were decoupled, which facilitated the establishment of control strategy of path following. The guidance law and the cross-track error were derived from the classical line-of-sight (LOS) guidance principle. And the equilibrium point of the cross-track error was proven to be uniformly semiglobally exponentially stable (USGES), which guaranteed the exponential convergence to zero. A new disturbance estimation law was developed by adding a linear item of the estimation error into the classical one, which improved the principle’s precision and sensitivity dramatically. The control strategy was developed based on the integrator backstepping technique and the new disturbance estimation law, which made the equilibrium system to be uniformly globally asymptotically stable (UGAS). Computer simulations were conducted to verify the effectiveness of the estimation and control laws during straight-line path following for asymmetric unmanned platform in the presence of unknown disturbances

    Nonlinear Model Predictive Control with Terminal Invariant Manifolds for Stabilization of Underactuated Surface Vessel

    Get PDF
    A nonlinear model predictive control (MPC) is proposed for underactuated surface vessel (USV) with constrained invariant manifolds. Aimed at the special structure of USV, the invariant manifold under the given controller is constructed in terms of diffeomorphism and Lyapunov stability theory. Based on MPC, the states of the USV are steered into the constrained terminal invariant manifolds. After the terminal manifolds set is reached, a linear feedback control is used to stabilize the system. The simulation results verified the effectiveness of the proposed method. It is shown that, based on invariant manifolds constraints, it is easy to get the MPC for the USV and it is suitable for practical application

    Identification and Optimal Linear Tracking Control of ODU Autonomous Surface Vehicle

    Get PDF
    Autonomous surface vehicles (ASVs) are being used for diverse applications of civilian and military importance such as: military reconnaissance, sea patrol, bathymetry, environmental monitoring, and oceanographic research. Currently, these unmanned tasks can accurately be accomplished by ASVs due to recent advancements in computing, sensing, and actuating systems. For this reason, researchers around the world have been taking interest in ASVs for the last decade. Due to the ever-changing surface of water and stochastic disturbances such as wind and tidal currents that greatly affect the path-following ability of ASVs, identification of an accurate model of inherently nonlinear and stochastic ASV system and then designing a viable control using that model for its planar motion is a challenging task. For planar motion control of ASV, the work done by researchers is mainly based on the theoretical modeling in which the nonlinear hydrodynamic terms are determined, while some work suggested the nonlinear control techniques and adhered to simulation results. Also, the majority of work is related to the mono- or twin-hull ASVs with a single rudder. The ODU-ASV used in present research is a twin-hull design having two DC trolling motors for path-following motion. A novel approach of time-domain open-loop observer Kalman filter identifications (OKID) and state-feedback optimal linear tracking control of ODU-ASV is presented, in which a linear state-space model of ODU-ASV is obtained from the measured input and output data. The accuracy of the identified model for ODU-ASV is confirmed by validation results of model output data reconstruction and benchmark residual analysis. Then, the OKID-identified model of the ODU-ASV is utilized to design the proposed controller for its planar motion such that a predefined cost function is minimized using state and control weighting matrices, which are determined by a multi-objective optimization genetic algorithm technique. The validation results of proposed controller using step inputs as well as sinusoidal and arc-like trajectories are presented to confirm the controller performance. Moreover, real-time water-trials were performed and their results confirm the validity of proposed controller in path-following motion of ODU-ASV

    Autopilot Design for Unmanned Surface Vehicle based on CNN and ACO

    Get PDF
    There is a growing concern to design intelligent controllers for autopiloting unmanned surface vehicles as solution for many naval and civilian requirements. Traditional autopilot’s performance declines due to the uncertainties in hydrodynamics as a result of harsh sailing conditions and sea states. This paper reports the design of a novel nonlinear model predictive controller (NMPC) based on convolutional neural network (CNN) and ant colony optimizer (ACO) which is superior to a linear proportional integral-derivative counterpart. This combination helps the control system to deal with model uncertainties with robustness. The results of simulation and experiment demonstrate the proposed method is more efficient and more capable to guide the vehicle through LOS waypoints particularly in the presence of large disturbances
    corecore