24 research outputs found

    A novel approach to the control of quad-rotor helicopters using fuzzy-neural networks

    Get PDF
    Quad-rotor helicopters are agile aircraft which are lifted and propelled by four rotors. Unlike traditional helicopters, they do not require a tail-rotor to control yaw, but can use four smaller fixed-pitch rotors. However, without an intelligent control system it is very difficult for a human to successfully fly and manoeuvre such a vehicle. Thus, most of recent research has focused on small unmanned aerial vehicles, such that advanced embedded control systems could be developed to control these aircrafts. Vehicles of this nature are very useful when it comes to situations that require unmanned operations, for instance performing tasks in dangerous and/or inaccessible environments that could put human lives at risk. This research demonstrates a consistent way of developing a robust adaptive controller for quad-rotor helicopters, using fuzzy-neural networks; creating an intelligent system that is able to monitor and control the non-linear multi-variable flying states of the quad-rotor, enabling it to adapt to the changing environmental situations and learn from past missions. Firstly, an analytical dynamic model of the quad-rotor helicopter was developed and simulated using Matlab/Simulink software, where the behaviour of the quad-rotor helicopter was assessed due to voltage excitation. Secondly, a 3-D model with the same parameter values as that of the analytical dynamic model was developed using Solidworks software. Computational Fluid Dynamics (CFD) was then used to simulate and analyse the effects of the external disturbance on the control and performance of the quad-rotor helicopter. Verification and validation of the two models were carried out by comparing the simulation results with real flight experiment results. The need for more reliable and accurate simulation data led to the development of a neural network error compensation system, which was embedded in the simulation system to correct the minor discrepancies found between the simulation and experiment results. Data obtained from the simulations were then used to train a fuzzy-neural system, made up of a hierarchy of controllers to control the attitude and position of the quad-rotor helicopter. The success of the project was measured against the quad-rotor’s ability to adapt to wind speeds of different magnitudes and directions by re-arranging the speeds of the rotors to compensate for any disturbance. From the simulation results, the fuzzy-neural controller is sufficient to achieve attitude and position control of the quad-rotor helicopter in different weather conditions, paving way for future real time applications

    Assessment of the State of the Art of Integrated Vehicle Health Management Technologies as Applicable to Damage Conditions

    Get PDF
    A survey of literature from academia, industry, and other Government agencies assessed the state of the art in current integrated vehicle health management (IVHM) aircraft technologies. These are the technologies that are used for assessing vehicle health at the system and subsystem level. This study reports on how these technologies are employed by major military and commercial platforms for detection, diagnosis, prognosis, and mitigation. Over 200 papers from five conferences from the time period of 2004 to 2009 were reviewed. Over 30 of these IVHM technologies are then mapped into the 17 different adverse event damage conditions identified in a previous study. This study illustrates existing gaps and opportunities for additional research by the NASA IVHM Project

    Modelling and Navigation of Autonomous Vehicles on Roundabouts

    Get PDF
    A path following controller was proposed that allows autonomous vehicles to safely navigate roundabouts. The controller consisted of a vector field algorithm that generated velocity commands to direct a vehicle. These velocity commands were fulfilled by an actuator controller that converts the velocity commands into wheel torques and steering angles that physically move a vehicle. This conversion is accomplished using an online optimization process that relies on an internal vehicle model to solve for necessary wheel torques and steering angles. To test the controller’s performance, a 16 degree of freedom vehicle dynamic model was developed with consideration for vehicle turn physics. Firstly, tire force data was gathered by performing driving maneuvers on a test track using a vehicle fitted with tire measurement equipment. The generated tire force data was used to compare various combined slip tire force models for their accuracy. The most accurate model was added to the high-fidelity vehicle model. Next, suspension kinematic data was generated using a simple testing procedure. The vehicle was equipped with the tire measurement equipment and the vehicle was raised a lowered with a hydraulic jack. Using displacement and orientation data from this test, a novel reduced order suspension kinematic model that reproduces the observed motion profile was developed. Application of the path following controller to the high-fidelity model resulted in close following of a roundabout path with small deviations

    Actuators for Intelligent Electric Vehicles

    Get PDF
    This book details the advanced actuators for IEVs and the control algorithm design. In the actuator design, the configuration four-wheel independent drive/steering electric vehicles is reviewed. An in-wheel two-speed AMT with selectable one-way clutch is designed for IEV. Considering uncertainties, the optimization design for the planetary gear train of IEV is conducted. An electric power steering system is designed for IEV. In addition, advanced control algorithms are proposed in favour of active safety improvement. A supervision mechanism is applied to the segment drift control of autonomous driving. Double super-resolution network is used to design the intelligent driving algorithm. Torque distribution control technology and four-wheel steering technology are utilized for path tracking and adaptive cruise control. To advance the control accuracy, advanced estimation algorithms are studied in this book. The tyre-road peak friction coefficient under full slip rate range is identified based on the normalized tyre model. The pressure of the electro-hydraulic brake system is estimated based on signal fusion. Besides, a multi-semantic driver behaviour recognition model of autonomous vehicles is designed using confidence fusion mechanism. Moreover, a mono-vision based lateral localization system of low-cost autonomous vehicles is proposed with deep learning curb detection. To sum up, the discussed advanced actuators, control and estimation algorithms are beneficial to the active safety improvement of IEVs

    Real-time Knowledge-based Fuzzy Logic Model for Soft Tissue Deformation

    Get PDF
    In this research, the improved mass spring model is presented to simulate the human liver deformation. The underlying MSM is redesigned where fuzzy knowledge-based approaches are implemented to determine the stiffness values. Results show that fuzzy approaches are in very good agreement to the benchmark model. The novelty of this research is that for liver deformation in particular, no specific contributions in the literature exist reporting on real-time knowledge-based fuzzy MSM for liver deformation

    Development of Fault Tolerant Adaptive Control Laws for Aerospace Systems

    Get PDF
    The main topic of this dissertation is the design, development and implementation of intelligent adaptive control techniques designed to maintain healthy performance of aerospace systems subjected to malfunctions, external parameter changes and/or unmodeled dynamics. The dissertation is focused on the development of novel adaptive control configurations that rely on non-linear functions that appear in the immune system of living organisms as main source of adaptation. One of the main goals of this dissertation is to demonstrate that these novel adaptive control architectures are able to improve overall performance and protect the system while reducing control effort and maintaining adequate operation outside bounds of nominal design. This research effort explores several phases, ranging from theoretical stability analysis, simulation and hardware implementation on different types of aerospace systems including spacecraft, aircraft and quadrotor vehicles. The results presented in this dissertation are focused on two main adaptivity approaches, the first one is intended for aerospace systems that do not attain large angles and use exact feedback linearization of Euler angle kinematics. A proof of stability is presented by means of the circle Criterion and Lyapunov’s direct method. The second approach is intended for aerospace systems that can attain large attitude angles (e.g. space systems in gravity-less environments), the adaptation is incorporated on a baseline architecture that uses partial feedback linearization of quaternions kinematics. In this case, the closed loop stability was analyzed using Lyapunov’s direct method and Barbalat’s Lemma. It is expected that some results presented in this dissertation can contribute towards the validation and certification of direct adaptive controllers

    Robust control design for vehicle active suspension systems with uncertainty

    Get PDF
    A vehicle active suspension system, in comparison with its counterparts, plays a crucial role in adequately guarantee the stability of the vehicle and improve the suspension performances. With a full understanding of the state of the art in vehicle control systems, this thesis identifies key issues in robust control design for active suspension systems with uncertainty, contributes to enhance the suspension performances via handling tradeoffs between ride comfort, road holding and suspension deflection. Priority of this thesis is to emphasize the contributions in handing actuator-related challenges and suspension model parameter uncertainty. The challenges in suspension actuators are identified as time-varying actuator delay and actuator faults. Time-varying delay and its effects in suspension actuators are targeted and analyzed. By removing the assumptions from the state of the art methods, state-feedback and output-feedback controller design methods are proposed to design less conservative state-feedback and output-feedback controller existence conditions. It overcomes the challenges brought by generalized timevarying actuator delay. On the other hand, a novel fault-tolerant controller design algorithm is developed for active suspension systems with uncertainty of actuator faults. A continuous-time homogeneous Markov process is presented for modeling the actuator failure process. The fault-tolerant H∞ controller is designed to guarantee asymptotic the stability, H∞ performance, and the constrained performance with existing possible actuator failures. It is evident that vehicle model parameter uncertainty is a vital factor affecting the performances of suspension control system. Consequently, this thesis presents two robust control solutions to overcome suspension control challenges with nonlinear constraints. A novel fuzzy control design algorithm is presented for active suspension systems with uncertainty. By using the sector nonlinearity method, Takagi-Sugeno (T-S) fuzzy systems are used to model the system. Based on Lyapunov stability theory, a new reliable fuzzy controller is designed to improve suspension performances. A novel adaptive sliding mode controller design approach is also developed for nonlinear uncertain vehicle active suspension systems. An adaptive sliding mode controller is designed to guarantee the stability and improve the suspension performances. In conclusion, novel control design algorithms are proposed for active suspension systems with uncertainty in order to guarantee and improve the suspension performance. Simulation results and comparison with the state of the art methods are provided to evaluate the effectiveness of the research contributions. The thesis shows insights into practical solutions to vehicle active suspension systems, it is expected that these algorithms will have significant potential in industrial applications and electric vehicles industry.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore