384 research outputs found

    Enable++ : a second generation FPGA processor

    Get PDF
    In the computing community field programmable processors are going to fill the niche for special purpose computing devices. A typical example is ultra-fast pattern recognition in experimental particle physics - a task for which we constructed two years ago Enable- 1, an FPGA processor rather specialized for pattern recognition algorithms in μs domain, but also provided with modest features for coping with more general applications. This paper presents the follow-up modell Enable++, a 2nd generation FPGA processor that offers several substantial enhancements over the previous system for a wider range of applications: Enable++ is structured into three different state-of-the-art modules for providing computing power, flexible and high-speed I/O communication and powerful intermodule communication with a raw bandwidth of 3.2 GByte/s by an active backplane. The technical realization of all three modules is guided by the maximum usage of field programmable logic. The actual demand of computing-and I/O-power can be satisified by the number of modules plugged into the crate. Enhanced features of Enable++ comprise the configurable processor topology provided by programmable crossbar switches. In combination with the 4 x 4 FPGA array and 12 MByte distributed RAM the Enable++ computing core offers a strongly increased and scalable computing power. For building new applications the system offers a comfortable programming and debugging environment consisting of a compiler for the C-like hardware description language spC, a simulator and a source level debugger for hardware design. The goal in planning the hardware design environment for Enable++ from scratch is to transfer established methodologies in software design to the design of digital logic. Concerning pattern recognition tasks, we estimate that Enable++ surpasses modern RISC processors by a factor of 100 to 1000

    Advanced information processing system: The Army fault tolerant architecture conceptual study. Volume 2: Army fault tolerant architecture design and analysis

    Get PDF
    Described here is the Army Fault Tolerant Architecture (AFTA) hardware architecture and components and the operating system. The architectural and operational theory of the AFTA Fault Tolerant Data Bus is discussed. The test and maintenance strategy developed for use in fielded AFTA installations is presented. An approach to be used in reducing the probability of AFTA failure due to common mode faults is described. Analytical models for AFTA performance, reliability, availability, life cycle cost, weight, power, and volume are developed. An approach is presented for using VHSIC Hardware Description Language (VHDL) to describe and design AFTA's developmental hardware. A plan is described for verifying and validating key AFTA concepts during the Dem/Val phase. Analytical models and partial mission requirements are used to generate AFTA configurations for the TF/TA/NOE and Ground Vehicle missions

    Materials and processes to enable polymeric waveguide integration on flexible substrates

    Get PDF
    Polymeric waveguide-on-flex has the potential to replace complex and costly light-turning devices in optoelectronic applications. As light signals are propagated and confined through the definition of core-cladding interface, the light guiding structure is required to adhere well and ensure long term interfacial stability. This thesis addresses the gap that has emerged in the fundamental material issues such as the polymeric optical waveguide materials deposited on the flexible substrates. In addition, this thesis investigates the feasibility of a new approach using electrostatic-induced lithography in micro-patterning of polymer, in optical waveguide fabrication. Plasma treatment is applied to enhance interfacial adhesion between flex substrates and optical cladding layers. The modified flex surfaces of polyimide KaptonHNTM and liquid crystal polymer VecstarTM materials are characterised. In addition, sonochemical surface treatment is evaluated on these flexible substrates. ToF-SIMS depth profiling has confirmed the interface reaction mechanisms where it has shown that plasma treatment increases the interfacial interpenetration. The larger interfacial width increases the possible entanglement mechanism between the polymer chains. These results, together with the double cantilever beam testing, indicate the strengthening of the polymeric interface upon plasma treatment, which is essential for long term optical and mechanical stability of waveguide-on-flex applications. A new method of micro-pattering of polymer material has been adopted for fabricating multimode waveguide-on-flex. The method, using an electrostatic-induced lithography, is developed to produce 50 μm x 50 μm arrays of polysiloxane LightlinkTM waveguide on flex. This thesis looks at various process recipes of the technique and reports the pattern formation of polymeric optical core. By adjusting the spin-coated liquid core thickness, pre-bake condition, UV exposure and applied voltage, the aspect ratio and profile of the optical core microstructure can be varied. As the electrostatic pressure overcoming the surface tension of spin-coated waveguide material induces the optical core formation, the core structure is smooth, making it ideal for low scattering loss waveguide. The propagation loss of fabricated waveguide is measured at 1.97 dB/cm at 850 nm wavelength. The result shows that the use of electrostatic-induced lithography in optical polymer is a promising approach for low cost and low temperature (<150 °C) processing at back end optical-electrical integrated circuitry assembly

    ATLAS liquid argon calorimeter back end electronics

    Get PDF
    The Liquid Argon calorimeters play a central role in the ATLAS (A Toroidal LHC Apparatus) experiment. The environment at the Large Hadron Collider (LHC) imposes strong constraints on the detectors readout systems. In order to achieve very high precision measurements, the detector signals are processed at various stages before reaching the Data Acquisition system (DAQ). Signals from the calorimeter cells are received by on-detector Front End Boards (FEB), which sample the incoming pulse every 25ns and digitize it at a trigger rate of up to 75~kHz. Off-detector Read Out Driver (ROD) boards further process the data and send reconstructed quantities to the DAQ while also monitoring the data quality. In this paper, the ATLAS Liquid Argon electronics chain is described first, followed by a detailed description of the off-detector readout system. Finally, the tests performed on the system are summarized

    Pluggable Optical Connector Interfaces for Electro-Optical Circuit Boards

    Get PDF
    A study is hereby presented on system embedded photonic interconnect technologies, which would address the communications bottleneck in modern exascale data centre systems driven by exponentially rising consumption of digital information and the associated complexity of intra-data centre network management along with dwindling data storage capacities. It is proposed that this bottleneck be addressed by adopting within the system electro-optical printed circuit boards (OPCBs), on which conventional electrical layers provide power distribution and static or low speed signaling, but high speed signals are conveyed by optical channels on separate embedded optical layers. One crucial prerequisite towards adopting OPCBs in modern data storage and switch systems is a reliable method of optically connecting peripheral cards and devices within the system to an OPCB backplane or motherboard in a pluggable manner. However the large mechanical misalignment tolerances between connecting cards and devices inherent to such systems are contrasted by the small sizes of optical waveguides required to support optical communication at the speeds defined by prevailing communication protocols. An innovative approach is therefore required to decouple the contrasting mechanical tolerances in the electrical and optical domains in the system in order to enable reliable pluggable optical connectivity. This thesis presents the design, development and characterisation of a suite of new optical waveguide connector interface solutions for electro-optical printed circuit boards (OPCBs) based on embedded planar polymer waveguides and planar glass waveguides. The technologies described include waveguide receptacles allowing parallel fibre connectors to be connected directly to OPCB embedded planar waveguides and board-to-board connectors with embedded parallel optical transceivers allowing daughtercards to be orthogonally connected to an OPCB backplane. For OPCBs based on embedded planar polymer waveguides and embedded planar glass waveguides, a complete demonstration platform was designed and developed to evaluate the connector interfaces and the associated embedded optical interconnect. Furthermore a large portfolio of intellectual property comprising 19 patents and patent applications was generated during the course of this study, spanning the field of OPCBs, optical waveguides, optical connectors, optical assembly and system embedded optical interconnects

    Development of prototype components for the Silicon Tracking System of the CBM experiment at FAIR

    Get PDF
    Das CBM-Experiment an der zukuenftigen Beschleunigeranlage FAIR wird die Eigenschaften von Kernmaterie unter extremen Bedingungen untersuchen. Das experimentelle Programm unterscheidet sich von den Schwerionen-Experimenten an RHIC (BNL) und LHC (CERN), die Kernmaterie bei hohen Temperaturen erzeugen. Im Gegensatz dazu kann die Untersuchung des QCD-Phasendiagramms, im Bereich der hoechsten Nettobaryonendichten und moderaten Temperaturen, die nur schwach untersucht wurden, mit hoher Praezision durchgefuehrt werden. Hierzu werden Kollisionen der verschiedenen Schwerionenstrahlen, bei Energien von 10-45GeV/Nukleon, mit nuklearem Target gemessen. Das physikalische Programm des CBM Experimentes umfasst die Messung sowohl der seltenen Sonden als auch der Mengenobservablen, die aus verschiedenen Zeitphasen des Zusammenstosses der Kerne stammen. Insbesondere kann der Zerfall von Teilchen mit Charm-Quarks durch Rekonstruktion des Zerfallsvertex, versetzt von dem primaeren Wechselwirkungspunkt um mehrere hundert Mikrometer, registriert werden. Hierzu ist praezises Tracking bei voller Ereignisrekonstruktion, mit bis zu 600 Spuren der geladenen Teilchen pro Ereignis innerhalb der Akzeptanz, noetig. Andere seltene Sonden erfordern den Betrieb bei einer Wechselwirkung von bis zu 10 MHz. Das Detektor-System, dass Tracking durchfuehrt, muss eine hohe Ortsaufloesung, auf der Ebene von 10 um leisten, mit hohen Arbeitsgeschwindigkeiten zu betreiben sein und ebenso ein strahlungstolerantes Design mit geringem Materialbudget besitzen. Das Silicon Tracking System (STS) wurde entwickelt um die Spuren geladener Teilchen in einem Magnetfeld zu rekonstruieren. Das System besteht aus acht Tracking Stationen, die sich in der Oeffnung eines Dipolmagneten mit 1T Feld befinden. Bei Spuren mit Impulsen ueber 1 GeV, betraegt die Impulsaufloesung bei einem solchen System etwa 1%. Um diese Aufgabe erfuellen zu koennen, ist eine sorgfaeltige Optimierung des Detektordesigns erforderlich. Insbesondere muss ein minimales Materialbudget erreicht werden. Die Herstellung eines Detektor-Moduls erfordert Aktivitaeten mit Bezug auf die Modul-Komponenten und deren Integration. Ein Detektor-Modul ist eine grundlegende funktionelle Einheit, die einen Sensor, ein Analogmikrokabel und Front-End-Elektronik umfasst, montiert auf einer Traegerstruktur. Das Ziel der Arbeit ist es, die Qualitaetssicherungstests der Prototyp-Modulkomponenten, zur Bestaetigung des Detektor-Modul-Konzeptes durchzufuehren, und um seinen Betrieb mit radioaktiven Quellen und Teilchenstrahlen zu demonstrieren. Die doppelseitigen Silizium-Mikrostreifendetektoren wurden als Sensortechnik fuer den STS, aufgrund der Kombination einer guten Ortsaufloesung, einer zweidimensionalen Koordinatenmessung mit geringem Materialbudget (0.3%X0), der hohen Auslesegeschwindigkeit und ausreichender Strahlungstoleranz gewaehlt. Mehrere Generationen von doppelseitigen Silizium-Mikrostreifendetektoren wurden zur Erkundung strahlenharter Konstruktionsmerkmale und des Konzepts, eines grossflaechigen Sensors und dessen Kompatibilitaet mit der Leiter-Struktur des Detektor-Moduls, hergestellt. Insbesondere wurden Sensoren mit doppelter Metallschicht auf beiden Seiten und aktivem Bereich von 62x62 mm2 produziert. Die elektrische Charakterisierung der Sensoren wurde durchgefuehrt, um die gesamte Bedienbarkeit sowie die Extrahierung der Geraeteparameter feststellen zu koennen. Strom und Kapazitaets-Spannungs-Charakteristiken sowie Interstreifenparameter wurden gemessen. Das Auslesen der Sensoren wurde mithilfe einer selbstgetriggerten Front-End-Elektronik getaetigt. Ein Front-End-Board wurde auf der Grundlage eines n-XYTER-Auslesechips mit datengesteuerter Architektur entwickelt, der geeignet ist bei Auslesegeschwindigkeit von 32MHz betrieben zu werden. Die Front-End-Platine enthaelt einen externen Analog-zu-Digital-Wandler (ADC). Die Kalibrierung des ADC wurde unter Verwendung von sowohl Roentgenquelle als auch eines Impulsgenerators vorgenommen. Die Schwellenkalibrierung und Untersuchung der Temperaturabhaengigkeit der Chip-Parameter wurden durchgefuehrt. Die ultraleichten Halterungsstrukturen wurden aus Kohlefaser entwickelt, diese haben die Steifigkeit, die Detektor-Module halten, und die minimale Coulomb-Streuung der Teilchenspuren einbeziehen zu koennen. Es wurden Analogmikrokabel mit Aluminiumleiterbahnen auf einem Polyimidsubstrat produziert - eine Kombination von guter elektrischer Verbindung und geringem Materialbudget. Die Mikrokabelstruktur umfasst mehrere Lagen optimiert fuer die niedrige Kapazitaet der Leiterbahnen und den damit verbundenen geraeuscharmen Betrieb. Es wurden Analog-Mikrokabel mit Aluminiumleiterbahnen auf einem Polyimidsubstrat produziert, also eine Kombination von guter elektrischer Verbindung und geringem Materialbudget. Die Mikrokabelstruktur umfasst mehrere Lagen optimiert fuer die niedrige Kapazitaet und den damit verbundenen geraeuscharmen Betrieb. Es wurde ein Demonstrator-Tracking-Teleskop gebaut und in mehreren Strahltests, einschliesslich 2.5 GeV Protonenstrahl an COSY (Juelich), betrieben. Drei Tracking-Stationen wurden mit Hodoskopen ergaenzt. Die Datenanalyse ergab Informationen ueber Analog- und Zeitverhalten sowie Strahlenprofil. So wurden Tracking- und Alignmentinformationen erhalten. Mit speziell entwickelten Monitoring-Tools wurde die Strahlstabilitaet bewertet. Als Ergebnis der Studien, wurde die Leistung der Modulkomponenten bewertet und die Anforderungen zum Detektormodul formuliert. Die genaue Definition des endgueltigen Detektormoduldesigns jedoch, war ausserhalb des Geltungsbereichs dieser Arbeit.The CBM experiment at future accelerator facility FAIR will investigate the properties of nuclear matter under extreme conditions. The experimental programm is different from the heavy-ion experiments at RHIC (BNL) and LHC (CERN) that create nuclear matter at high temperatures. In contrast, the study of the QCD phase diagram in the region of the highest net baryon densities and moderate temperatures that is weakly explored will be performed with high precision. For this, collisions of different heavy-ion beams at the energies of 10–45GeV/nucleon with nuclear target will be measured. The physics programme of the CBM experiment includes measurement of both rare probes and bulk observables that originate from various phases of a nucleus-nucleus collision. In particular, decay of particles with charm quarks can be registered by reconstructing the decay vertex detached from the primary interaction point by several hundreds of micrometers (e.g., decay length c Tau = 123 µm for D0 meson). For this, precise tracking and full event reconstruction with up to 600 charged particle tracks per event within acceptance are required. Other rare probes require operation at interaction rate of up to 10MHz. The detector system that performs tracking has to provide high position resolution on the order of 10 µm, operate at high rates and have radiation tolerant design with low material budget. The Silicon Tracking System (STS) is being designed for charged-particle tracking in a magnetic field. The system consists of eight tracking station located in the aperture of a dipole magnet with 1T field. For tracks with momentum above 1GeV, momentum resolution of such a system is expected to be about 1%. In order to fulfill this task, thorough optimization of the detector design is required. In particular, minimal material budget has to be achieved. Production of a detector module requires research and development activities with respect to the module components and their integration. A detector module is a basic functional unit that includes a sensor, an analogue microcable and frontend electronics mounted on a support structure. The objective of the thesis is to perform quality assurance tests of the prototype module components in order to validate the concept of the detector module and to demonstrate its operation using radioactive sources and particle beams. Double-sided silicon microstrip detectors have been chosen as sensor technology for the STS because of the combination of a good spatial resolution, two-dimensional coordinate measurement achieved within low material budget (0.3%X0), high readout speed and sufficient radiation tolerance. Several generations of double-sided silicon microstrip sensors have been manufactured in order to explore the radiation hard design features and the concept of a large-area sensor compatible with ladder-type structure of the detector module. In particular, sensors with double metal layer on both sides and active area of 62×62mm2 have been produced. Electrical characterization of the sensors has been performed in order to establish the overall operability as well as to extract the device parameters. Current-voltage, capacitance-voltage characteristics and interstrip parameters have been measured. Readout of the sensors has been done using self-triggering front-end electronics. A front-end board has been developed based on the n-XYTER readout chip with data driven architecture and capable of operating at 32MHz readout rate. The front-end board included an external analog-to-digital converter (ADC). Calibration of the ADC has been performed using both 241Am X-ray source and external pulse generator. Threshold calibration and investigation of temperature dependence of chip parameters has been carried out. Low-mass support structures have been developed using carbon fibre that has the rigidity to hold the detector modules and introduce minimal Coulomb scattering of the particle tracks. Analogue microcables have been produced with aluminium traces on a polyimide substrate, thus combining good electrical connection with low material budget. Microcable structure includes several layers optimized for low trace capacitance and thus low-noise performance. A demonstrator tracking telescope has been constructed and operated in several beam tests including 2.5GeV proton beam at COSY synchrotron (Jülich). Three tracking stations have been complemented with several beam hodoscopes. Analysis of the beam data has yielded information on analogue and timing response, beam profile. Tracking and alignment information has been obtained. Beam stability has been evaluated using specially developed monitoring tools. As a result of conducted studies, performance of the module components have been evaluated and requirements to the detector module have been formulated. Practical suggestions have been made with respect to the structure of the detector module, whereas precise definition of the final detector module design was outside of the scope of this thesis
    corecore