8,505 research outputs found

    Sensor Selection and Integration to Improve Video Segmentation in Complex Environments

    Get PDF
    Background subtraction is often considered to be a required stage of any video surveillance system being used to detect objects in a single frame and/or track objects across multiple frames in a video sequence. Most current state-of-the-art techniques for object detection and tracking utilize some form of background subtraction that involves developing a model of the background at a pixel, region, or frame level and designating any elements that deviate from the background model as foreground. However, most existing approaches are capable of segmenting a number of distinct components but unable to distinguish between the desired object of interest and complex, dynamic background such as moving water and high reflections. In this paper, we propose a technique to integrate spatiotemporal signatures of an object of interest from different sensing modalities into a video segmentation method in order to improve object detection and tracking in dynamic, complex scenes. Our proposed algorithm utilizes the dynamic interaction information between the object of interest and background to differentiate between mistakenly segmented components and the desired component. Experimental results on two complex data sets demonstrate that our proposed technique significantly improves the accuracy and utility of state-of-the-art video segmentation technique. © 2014 Adam R. Reckley et al

    Full Reference Objective Quality Assessment for Reconstructed Background Images

    Full text link
    With an increased interest in applications that require a clean background image, such as video surveillance, object tracking, street view imaging and location-based services on web-based maps, multiple algorithms have been developed to reconstruct a background image from cluttered scenes. Traditionally, statistical measures and existing image quality techniques have been applied for evaluating the quality of the reconstructed background images. Though these quality assessment methods have been widely used in the past, their performance in evaluating the perceived quality of the reconstructed background image has not been verified. In this work, we discuss the shortcomings in existing metrics and propose a full reference Reconstructed Background image Quality Index (RBQI) that combines color and structural information at multiple scales using a probability summation model to predict the perceived quality in the reconstructed background image given a reference image. To compare the performance of the proposed quality index with existing image quality assessment measures, we construct two different datasets consisting of reconstructed background images and corresponding subjective scores. The quality assessment measures are evaluated by correlating their objective scores with human subjective ratings. The correlation results show that the proposed RBQI outperforms all the existing approaches. Additionally, the constructed datasets and the corresponding subjective scores provide a benchmark to evaluate the performance of future metrics that are developed to evaluate the perceived quality of reconstructed background images.Comment: Associated source code: https://github.com/ashrotre/RBQI, Associated Database: https://drive.google.com/drive/folders/1bg8YRPIBcxpKIF9BIPisULPBPcA5x-Bk?usp=sharing (Email for permissions at: ashrotreasuedu

    Tracking-Based Non-Parametric Background-Foreground Classification in a Chromaticity-Gradient Space

    Full text link
    This work presents a novel background-foreground classification technique based on adaptive non-parametric kernel estimation in a color-gradient space of components. By combining normalized color components with their gradients, shadows are efficiently suppressed from the results, while the luminance information in the moving objects is preserved. Moreover, a fast multi-region iterative tracking strategy applied over previously detected foreground regions allows to construct a robust foreground modeling, which combined with the background model increases noticeably the quality in the detections. The proposed strategy has been applied to different kind of sequences, obtaining satisfactory results in complex situations such as those given by dynamic backgrounds, illumination changes, shadows and multiple moving objects
    corecore