54,735 research outputs found

    Discovering salient objects from videos using spatiotemporal salient region detection

    Get PDF
    Detecting salient objects from images and videos has many useful applications in computer vision. In this paper, a novel spatiotemporal salient region detection approach is proposed. The proposed approach computes spatiotemporal saliency by estimating spatial and temporal saliencies separately. The spatial saliency of an image is computed by estimating the color contrast cue and color distribution cue. The estimations of these cues exploit the patch level and region level image abstractions in a unified way. The aforementioned cues are fused to compute an initial spatial saliency map, which is further refined to emphasize saliencies of objects uniformly, and to suppress saliencies of background noises. The final spatial saliency map is computed by integrating the refined saliency map with center prior map. The temporal saliency is computed based on local and global temporal saliencies estimations using patch level optical flow abstractions. Both local and global temporal saliencies are fused to compute the temporal saliency. Finally, spatial and temporal saliencies are integrated to generate a spatiotemporal saliency map. The proposed temporal and spatiotemporal salient region detection approaches are extensively experimented on challenging salient object detection video datasets. The experimental results show that the proposed approaches achieve an improved performance than several state-of-the-art saliency detection approaches. In order to compensate different needs in respect of the speed/accuracy tradeoff, faster variants of the spatial, temporal and spatiotemporal salient region detection approaches are also presented in this paper

    Unsupervised image saliency detection with Gestalt-laws guided optimization and visual attention based refinement.

    Get PDF
    Visual attention is a kind of fundamental cognitive capability that allows human beings to focus on the region of interests (ROIs) under complex natural environments. What kind of ROIs that we pay attention to mainly depends on two distinct types of attentional mechanisms. The bottom-up mechanism can guide our detection of the salient objects and regions by externally driven factors, i.e. color and location, whilst the top-down mechanism controls our biasing attention based on prior knowledge and cognitive strategies being provided by visual cortex. However, how to practically use and fuse both attentional mechanisms for salient object detection has not been sufficiently explored. To the end, we propose in this paper an integrated framework consisting of bottom-up and top-down attention mechanisms that enable attention to be computed at the level of salient objects and/or regions. Within our framework, the model of a bottom-up mechanism is guided by the gestalt-laws of perception. We interpreted gestalt-laws of homogeneity, similarity, proximity and figure and ground in link with color, spatial contrast at the level of regions and objects to produce feature contrast map. The model of top-down mechanism aims to use a formal computational model to describe the background connectivity of the attention and produce the priority map. Integrating both mechanisms and applying to salient object detection, our results have demonstrated that the proposed method consistently outperforms a number of existing unsupervised approaches on five challenging and complicated datasets in terms of higher precision and recall rates, AP (average precision) and AUC (area under curve) values

    Detecting Saliency in Infrared Images via Multiscale Local Sparse Representation and Local Contrast Measure

    Get PDF
    For infrared images, it is a formidable challenge to highlight salient regions completely and suppress the background noise effectively at the same time. To handle this problem, a novel saliency detection method based on multiscale local sparse representation and local contrast measure is proposed in this paper. The saliency detection problem is implemented in three stages. First, a multiscale local sparse representation based approach is designed for detecting saliency in infrared images. Using it, multiple saliency maps with various scales are obtained for an infrared image. These maps are then fused to generate a combined saliency map, which can highlight the salient region fully. Second, we adopt a local contrast measure based technique to process the infrared image. It divides the image into a number of image blocks. Then these blocks are utilized to calculate the local contrast to generate a local contrast measure based saliency map. In this map, the background noise can be suppressed effectually. Last, to make full use of the advantages of the above two saliency maps, we propose combining them together using an adaptive fusion scheme. Experimental results show that our method achieves better performance than several state-of-the-art algorithms for saliency detection in infrared images
    corecore