94 research outputs found

    Background Subtraction via Generalized Fused Lasso Foreground Modeling

    Full text link
    Background Subtraction (BS) is one of the key steps in video analysis. Many background models have been proposed and achieved promising performance on public data sets. However, due to challenges such as illumination change, dynamic background etc. the resulted foreground segmentation often consists of holes as well as background noise. In this regard, we consider generalized fused lasso regularization to quest for intact structured foregrounds. Together with certain assumptions about the background, such as the low-rank assumption or the sparse-composition assumption (depending on whether pure background frames are provided), we formulate BS as a matrix decomposition problem using regularization terms for both the foreground and background matrices. Moreover, under the proposed formulation, the two generally distinctive background assumptions can be solved in a unified manner. The optimization was carried out via applying the augmented Lagrange multiplier (ALM) method in such a way that a fast parametric-flow algorithm is used for updating the foreground matrix. Experimental results on several popular BS data sets demonstrate the advantage of the proposed model compared to state-of-the-arts

    Weighted Low Rank Approximation for Background Estimation Problems

    Full text link
    Classical principal component analysis (PCA) is not robust to the presence of sparse outliers in the data. The use of the â„“1\ell_1 norm in the Robust PCA (RPCA) method successfully eliminates the weakness of PCA in separating the sparse outliers. In this paper, by sticking a simple weight to the Frobenius norm, we propose a weighted low rank (WLR) method to avoid the often computationally expensive algorithms relying on the â„“1\ell_1 norm. As a proof of concept, a background estimation model has been presented and compared with two â„“1\ell_1 norm minimization algorithms. We illustrate that as long as a simple weight matrix is inferred from the data, one can use the weighted Frobenius norm and achieve the same or better performance

    Online and Batch Supervised Background Estimation via L1 Regression

    Get PDF
    We propose a surprisingly simple model for supervised video background estimation. Our model is based on â„“1\ell_1 regression. As existing methods for â„“1\ell_1 regression do not scale to high-resolution videos, we propose several simple and scalable methods for solving the problem, including iteratively reweighted least squares, a homotopy method, and stochastic gradient descent. We show through extensive experiments that our model and methods match or outperform the state-of-the-art online and batch methods in virtually all quantitative and qualitative measures

    Convex and Network Flow Optimization for Structured Sparsity

    Get PDF
    We consider a class of learning problems regularized by a structured sparsity-inducing norm defined as the sum of l_2- or l_infinity-norms over groups of variables. Whereas much effort has been put in developing fast optimization techniques when the groups are disjoint or embedded in a hierarchy, we address here the case of general overlapping groups. To this end, we present two different strategies: On the one hand, we show that the proximal operator associated with a sum of l_infinity-norms can be computed exactly in polynomial time by solving a quadratic min-cost flow problem, allowing the use of accelerated proximal gradient methods. On the other hand, we use proximal splitting techniques, and address an equivalent formulation with non-overlapping groups, but in higher dimension and with additional constraints. We propose efficient and scalable algorithms exploiting these two strategies, which are significantly faster than alternative approaches. We illustrate these methods with several problems such as CUR matrix factorization, multi-task learning of tree-structured dictionaries, background subtraction in video sequences, image denoising with wavelets, and topographic dictionary learning of natural image patches.Comment: to appear in the Journal of Machine Learning Research (JMLR

    Weighted Low-Rank Approximation of Matrices and Background Modeling

    Get PDF
    We primarily study a special a weighted low-rank approximation of matrices and then apply it to solve the background modeling problem. We propose two algorithms for this purpose: one operates in the batch mode on the entire data and the other one operates in the batch-incremental mode on the data and naturally captures more background variations and computationally more effective. Moreover, we propose a robust technique that learns the background frame indices from the data and does not require any training frames. We demonstrate through extensive experiments that by inserting a simple weight in the Frobenius norm, it can be made robust to the outliers similar to the â„“1\ell_1 norm. Our methods match or outperform several state-of-the-art online and batch background modeling methods in virtually all quantitative and qualitative measures.Comment: arXiv admin note: text overlap with arXiv:1707.0028
    • …
    corecore