1,879 research outputs found

    Complex Background Subtraction by Pursuing Dynamic Spatio-Temporal Models

    Full text link
    Although it has been widely discussed in video surveillance, background subtraction is still an open problem in the context of complex scenarios, e.g., dynamic backgrounds, illumination variations, and indistinct foreground objects. To address these challenges, we propose an effective background subtraction method by learning and maintaining an array of dynamic texture models within the spatio-temporal representations. At any location of the scene, we extract a sequence of regular video bricks, i.e. video volumes spanning over both spatial and temporal domain. The background modeling is thus posed as pursuing subspaces within the video bricks while adapting the scene variations. For each sequence of video bricks, we pursue the subspace by employing the ARMA (Auto Regressive Moving Average) Model that jointly characterizes the appearance consistency and temporal coherence of the observations. During online processing, we incrementally update the subspaces to cope with disturbances from foreground objects and scene changes. In the experiments, we validate the proposed method in several complex scenarios, and show superior performances over other state-of-the-art approaches of background subtraction. The empirical studies of parameter setting and component analysis are presented as well.Comment: 12 pages, 7 figure

    Background Subtraction via Fast Robust Matrix Completion

    Full text link
    Background subtraction is the primary task of the majority of video inspection systems. The most important part of the background subtraction which is common among different algorithms is background modeling. In this regard, our paper addresses the problem of background modeling in a computationally efficient way, which is important for current eruption of "big data" processing coming from high resolution multi-channel videos. Our model is based on the assumption that background in natural images lies on a low-dimensional subspace. We formulated and solved this problem in a low-rank matrix completion framework. In modeling the background, we benefited from the in-face extended Frank-Wolfe algorithm for solving a defined convex optimization problem. We evaluated our fast robust matrix completion (fRMC) method on both background models challenge (BMC) and Stuttgart artificial background subtraction (SABS) datasets. The results were compared with the robust principle component analysis (RPCA) and low-rank robust matrix completion (RMC) methods, both solved by inexact augmented Lagrangian multiplier (IALM). The results showed faster computation, at least twice as when IALM solver is used, while having a comparable accuracy even better in some challenges, in subtracting the backgrounds in order to detect moving objects in the scene

    Decomposition into Low-rank plus Additive Matrices for Background/Foreground Separation: A Review for a Comparative Evaluation with a Large-Scale Dataset

    Full text link
    Recent research on problem formulations based on decomposition into low-rank plus sparse matrices shows a suitable framework to separate moving objects from the background. The most representative problem formulation is the Robust Principal Component Analysis (RPCA) solved via Principal Component Pursuit (PCP) which decomposes a data matrix in a low-rank matrix and a sparse matrix. However, similar robust implicit or explicit decompositions can be made in the following problem formulations: Robust Non-negative Matrix Factorization (RNMF), Robust Matrix Completion (RMC), Robust Subspace Recovery (RSR), Robust Subspace Tracking (RST) and Robust Low-Rank Minimization (RLRM). The main goal of these similar problem formulations is to obtain explicitly or implicitly a decomposition into low-rank matrix plus additive matrices. In this context, this work aims to initiate a rigorous and comprehensive review of the similar problem formulations in robust subspace learning and tracking based on decomposition into low-rank plus additive matrices for testing and ranking existing algorithms for background/foreground separation. For this, we first provide a preliminary review of the recent developments in the different problem formulations which allows us to define a unified view that we called Decomposition into Low-rank plus Additive Matrices (DLAM). Then, we examine carefully each method in each robust subspace learning/tracking frameworks with their decomposition, their loss functions, their optimization problem and their solvers. Furthermore, we investigate if incremental algorithms and real-time implementations can be achieved for background/foreground separation. Finally, experimental results on a large-scale dataset called Background Models Challenge (BMC 2012) show the comparative performance of 32 different robust subspace learning/tracking methods.Comment: 121 pages, 5 figures, submitted to Computer Science Review. arXiv admin note: text overlap with arXiv:1312.7167, arXiv:1109.6297, arXiv:1207.3438, arXiv:1105.2126, arXiv:1404.7592, arXiv:1210.0805, arXiv:1403.8067 by other authors, Computer Science Review, November 201

    Quantification of Morphological Features in Non-Contrast Ultrasound Microvasculature Imaging

    Full text link
    Morphological features of small vessels provide invaluable information regarding underlying tissue, especially in cancerous tumors. This paper introduces methods for obtaining quantitative morphological features from microvasculature images obtained by non-contrast ultrasound imaging. Those images suffer from the artifact that limit quantitative analysis of the vessel morphological features. In this paper we introduce processing steps to increase accuracy of the morphological assessment for quantitative vessel analysis in presence of these artifact. Specifically, artificats are reduced by additional filtering and vessel segments obtained by skeletonization of the regularized microvasculature images are further analyzed to satisfy additional constraints, such as diameter, and length of the vessel segments. Measurement of some morphological metrics, such as tortuosity, depends on preserving large vessel trunks that may be broken down into multiple branches. We propose two methods to address this problem. In the first method, small vessel segments are suppressed in the vessel filtering process via adjusting the size scale of the regularization. Hence, tortuosity of the large trunks can be more accurately estimated by preserving longer vessel segments. In the second approach, small connected vessel segments are removed by a combination of morphological erosion and dilation operations on the segmented vasculature images. These methods are tested on representative in vivo images of breast lesion microvasculature, and the outcomes are discussed. This paper provides a tool for quantification of microvasculature image from non-contrast ultrasound imaging may result in potential biomarkers for diagnosis of some diseases.Comment: 32 pages, 18 figures, 2 table

    COROLA: A Sequential Solution to Moving Object Detection Using Low-rank Approximation

    Full text link
    Extracting moving objects from a video sequence and estimating the background of each individual image are fundamental issues in many practical applications such as visual surveillance, intelligent vehicle navigation, and traffic monitoring. Recently, some methods have been proposed to detect moving objects in a video via low-rank approximation and sparse outliers where the background is modeled with the computed low-rank component of the video and the foreground objects are detected as the sparse outliers in the low-rank approximation. All of these existing methods work in a batch manner, preventing them from being applied in real time and long duration tasks. In this paper, we present an online sequential framework, namely contiguous outliers representation via online low-rank approximation (COROLA), to detect moving objects and learn the background model at the same time. We also show that our model can detect moving objects with a moving camera. Our experimental evaluation uses simulated data and real public datasets and demonstrates the superior performance of COROLA in terms of both accuracy and execution time.Comment: 37 pages, 10 figure

    Low-Rank Modeling and Its Applications in Image Analysis

    Full text link
    Low-rank modeling generally refers to a class of methods that solve problems by representing variables of interest as low-rank matrices. It has achieved great success in various fields including computer vision, data mining, signal processing and bioinformatics. Recently, much progress has been made in theories, algorithms and applications of low-rank modeling, such as exact low-rank matrix recovery via convex programming and matrix completion applied to collaborative filtering. These advances have brought more and more attentions to this topic. In this paper, we review the recent advance of low-rank modeling, the state-of-the-art algorithms, and related applications in image analysis. We first give an overview to the concept of low-rank modeling and challenging problems in this area. Then, we summarize the models and algorithms for low-rank matrix recovery and illustrate their advantages and limitations with numerical experiments. Next, we introduce a few applications of low-rank modeling in the context of image analysis. Finally, we conclude this paper with some discussions.Comment: To appear in ACM Computing Survey

    Wavelet subspace decomposition of thermal infrared images for defect detection in artworks

    Full text link
    Monitoring the health of ancient artworks requires adequate prudence because of the sensitive nature of these materials. Classical techniques for identifying the development of faults rely on acoustic testing. These techniques, being invasive, may result in causing permanent damage to the material, especially if the material is inspected periodically. Non destructive testing has been carried out for different materials since long. In this regard, non-invasive systems were developed based on infrared thermometry principle to identify the faults in artworks. The test artwork is heated and the thermal response of the different layers is captured with the help of a thermal infrared camera. However, prolonged heating risks overheating and thus causing damage to artworks and an alternate approach is to use pseudo-random binary sequence excitations. The faults in the artwork, though, cannot be detected on the captured images, especially if their strength is weak. The weaker faults are either masked by the stronger ones, by the pictorial layer of the artwork or by the non-uniform heating. This work addresses the detection and localization of the faults through a wavelet based subspace decomposition scheme. The proposed scheme, on one hand, allows to remove the background while, on the other hand, removes the undesired high frequency noise. It is shown that the detection parameter is proportional to the diameter and the depth of the fault. A criterion is proposed to select the optimal wavelet basis along with suitable level selection for wavelet decomposition and reconstruction. The proposed approach is tested on a laboratory developed test sample with known fault locations and dimensions as well as real artworks. A comparison with a previously reported method demonstrates the efficacy of the proposed approach for fault detection in artworks

    Phase-Optimized K-SVD for Signal Extraction from Underdetermined Multichannel Sparse Mixtures

    Full text link
    We propose a novel sparse representation for heavily underdetermined multichannel sound mixtures, i.e., with much more sources than microphones. The proposed approach operates in the complex Fourier domain, thus preserving spatial characteristics carried by phase differences. We derive a generalization of K-SVD which jointly estimates a dictionary capturing both spectral and spatial features, a sparse activation matrix, and all instantaneous source phases from a set of signal examples. The dictionary can then be used to extract the learned signal from a new input mixture. The method is applied to the challenging problem of ego-noise reduction for robot audition. We demonstrate its superiority relative to conventional dictionary-based techniques using recordings made in a real room

    Implementation of face recognition in a mobile robot with RGBD images

    Get PDF
    The objective of this work is to contribute to developing a system for person identification through the analysis of an RGBD image of the face of the person in front of an Assistant Personal Robot (APR). To accomplish the purpose, the state-of-the-art works related to this subject will be studied, focusing on subject recognition but also on gender and age identification. Those works will be evaluated in advantages and disadvantages and finally an approach will be chosen to be implemented in this work. The camera used in this work is the Creative Senz3D Camera which provides RGB, infrared and depth simultaneous information; the RGB image without background is also processed and obtained, furthermore the camera provides the world 3D points. In the final planned application, the APR will capture face images trough the 3D camera and they will be used to identify the person in front of the robot

    Intelligent Measurement Analysis on Single Cell Raman Images for the Diagnosis of Follicular Thyroid Carcinoma

    Full text link
    Inter-observer variability and cancer over-diagnosis are emerging clinical problems, and there is a strong necessity to support the standards histological and cytological evaluations by biochemical composition information. Over the past decades, there has been a very active research in the development of Raman spectroscopy techniques for oncological applications and large scale clinical diagnosis. A major issue that has received a lot of attention in the Raman literature is the fact that variations in instrumental responses and intrinsic spectral backgrounds over different days of measurements or devices creates strong inconsistency of Raman intensity spectra over the various experimental condition, thus making the use of Raman spectroscopy on a large scale and reproductive basis difficult. We explore different methods to tackle this inconsistency and show that regular preprocessing methods such as baseline correction, normalization or wavelet transformation are inefficient on our datasets. We find that subtracting the mean background spectrum estimated by identifying non-cell regions in Raman images makes the data more consistent. As a proof of concept, we employ our single-cell Raman Imaging protocol to diagnosis challenging follicular lesions, that is known to be particularly difficult due to the lack of obvious morphological and cytological criteria for malignancy. We explore dimensionality reduction with both PCA and feature selection methods, and classification is then performed at the single cell level with standard classifiers such as k Nearest Neighbors or Random Forest. We investigate Raman hyperspectral images from FTC133, RO82W-1 and NthyOri 3-1 cell lines and show that the chemical information for the diagnosis is mostly contained in the cytoplasm. We also reveal some important wavenumber for malignancy, that can be associated mainly to lipids, cytochrome and phenylalanine.Comment: The manuscript's content is currently being discussed with the co-authors before submissio
    corecore