2,040 research outputs found

    Bridging topological and functional information in protein interaction networks by short loops profiling

    Get PDF
    Protein-protein interaction networks (PPINs) have been employed to identify potential novel interconnections between proteins as well as crucial cellular functions. In this study we identify fundamental principles of PPIN topologies by analysing network motifs of short loops, which are small cyclic interactions of between 3 and 6 proteins. We compared 30 PPINs with corresponding randomised null models and examined the occurrence of common biological functions in loops extracted from a cross-validated high-confidence dataset of 622 human protein complexes. We demonstrate that loops are an intrinsic feature of PPINs and that specific cell functions are predominantly performed by loops of different lengths. Topologically, we find that loops are strongly related to the accuracy of PPINs and define a core of interactions with high resilience. The identification of this core and the analysis of loop composition are promising tools to assess PPIN quality and to uncover possible biases from experimental detection methods. More than 96% of loops share at least one biological function, with enrichment of cellular functions related to mRNA metabolic processing and the cell cycle. Our analyses suggest that these motifs can be used in the design of targeted experiments for functional phenotype detection.This research was supported by the Biotechnology and Biological Sciences Research Council (BB/H018409/1 to AP, ACCC and FF, and BB/J016284/1 to NSBT) and by the Leukaemia & Lymphoma Research (to NSBT and FF). SSC is funded by a Leukaemia & Lymphoma Research Gordon Piller PhD Studentship

    The potential of text mining in data integration and network biology for plant research : a case study on Arabidopsis

    Get PDF
    Despite the availability of various data repositories for plant research, a wealth of information currently remains hidden within the biomolecular literature. Text mining provides the necessary means to retrieve these data through automated processing of texts. However, only recently has advanced text mining methodology been implemented with sufficient computational power to process texts at a large scale. In this study, we assess the potential of large-scale text mining for plant biology research in general and for network biology in particular using a state-of-the-art text mining system applied to all PubMed abstracts and PubMed Central full texts. We present extensive evaluation of the textual data for Arabidopsis thaliana, assessing the overall accuracy of this new resource for usage in plant network analyses. Furthermore, we combine text mining information with both protein-protein and regulatory interactions from experimental databases. Clusters of tightly connected genes are delineated from the resulting network, illustrating how such an integrative approach is essential to grasp the current knowledge available for Arabidopsis and to uncover gene information through guilt by association. All large-scale data sets, as well as the manually curated textual data, are made publicly available, hereby stimulating the application of text mining data in future plant biology studies

    Organization of Physical Interactomes as Uncovered by Network Schemas

    Get PDF
    Large-scale protein-protein interaction networks provide new opportunities for understanding cellular organization and functioning. We introduce network schemas to elucidate shared mechanisms within interactomes. Network schemas specify descriptions of proteins and the topology of interactions among them. We develop algorithms for systematically uncovering recurring, over-represented schemas in physical interaction networks. We apply our methods to the S. cerevisiae interactome, focusing on schemas consisting of proteins described via sequence motifs and molecular function annotations and interacting with one another in one of four basic network topologies. We identify hundreds of recurring and over-represented network schemas of various complexity, and demonstrate via graph-theoretic representations how more complex schemas are organized in terms of their lower-order constituents. The uncovered schemas span a wide range of cellular activities, with many signaling and transport related higher-order schemas. We establish the functional importance of the schemas by showing that they correspond to functionally cohesive sets of proteins, are enriched in the frequency with which they have instances in the H. sapiens interactome, and are useful for predicting protein function. Our findings suggest that network schemas are a powerful paradigm for organizing, interrogating, and annotating cellular networks

    NET-GE: a novel NETwork-based Gene Enrichment for detecting biological processes associated to Mendelian diseases

    Get PDF
    Enrichment analysis is a widely applied procedure for shedding light on the molecular mechanisms and functions at the basis of phenotypes, for enlarging the dataset of possibly related genes/proteins and for helping interpretation and prioritization of newly determined variations. Several standard and Network-based enrichment methods are available. Both approaches rely on the annotations that characterize the genes/proteins included in the input set; network based ones also include in different ways physical and functional relationships among different genes or proteins that can be extracted from the available biological networks of interactions

    An approach for the identification of targets specific to bone metastasis using cancer genes interactome and gene ontology analysis

    Get PDF
    Metastasis is one of the most enigmatic aspects of cancer pathogenesis and is a major cause of cancer-associated mortality. Secondary bone cancer (SBC) is a complex disease caused by metastasis of tumor cells from their primary site and is characterized by intricate interplay of molecular interactions. Identification of targets for multifactorial diseases such as SBC, the most frequent complication of breast and prostate cancers, is a challenge. Towards achieving our aim of identification of targets specific to SBC, we constructed a 'Cancer Genes Network', a representative protein interactome of cancer genes. Using graph theoretical methods, we obtained a set of key genes that are relevant for generic mechanisms of cancers and have a role in biological essentiality. We also compiled a curated dataset of 391 SBC genes from published literature which serves as a basis of ontological correlates of secondary bone cancer. Building on these results, we implement a strategy based on generic cancer genes, SBC genes and gene ontology enrichment method, to obtain a set of targets that are specific to bone metastasis. Through this study, we present an approach for probing one of the major complications in cancers, namely, metastasis. The results on genes that play generic roles in cancer phenotype, obtained by network analysis of 'Cancer Genes Network', have broader implications in understanding the role of molecular regulators in mechanisms of cancers. Specifically, our study provides a set of potential targets that are of ontological and regulatory relevance to secondary bone cancer.Comment: 54 pages (19 pages main text; 11 Figures; 26 pages of supplementary information). Revised after critical reviews. Accepted for Publication in PLoS ON

    Genetic and functional characterization of disease associations explains comorbidity

    Get PDF
    Understanding relationships between diseases, such as comorbidities, has important socio-economic implications, ranging from clinical study design to health care planning. Most studies characterize disease comorbidity using shared genetic origins, ignoring pathway-based commonalities between diseases. In this study, we define the disease pathways using an interactome-based extension of known disease-genes and introduce several measures of functional overlap. The analysis reveals 206 significant links among 94 diseases, giving rise to a highly clustered disease association network. We observe that around 95% of the links in the disease network, though not identified by genetic overlap, are discovered by functional overlap. This disease network portraits rheumatoid arthritis, asthma, atherosclerosis, pulmonary diseases and Crohn's disease as hubs and thus pointing to common inflammatory processes underlying disease pathophysiology. We identify several described associations such as the inverse comorbidity relationship between Alzheimer's disease and neoplasms. Furthermore, we investigate the disruptions in protein interactions by mapping mutations onto the domains involved in the interaction, suggesting hypotheses on the causal link between diseases. Finally, we provide several proof-of-principle examples in which we model the effect of the mutation and the change of the association strength, which could explain the observed comorbidity between diseases caused by the same genetic alterations

    Systematic identification of functional plant modules through the integration of complementary data sources

    Get PDF
    A major challenge is to unravel how genes interact and are regulated to exert specific biological functions. The integration of genome-wide functional genomics data, followed by the construction of gene networks, provides a powerful approach to identify functional gene modules. Large-scale expression data, functional gene annotations, experimental protein-protein interactions, and transcription factor-target interactions were integrated to delineate modules in Arabidopsis (Arabidopsis thaliana). The different experimental input data sets showed little overlap, demonstrating the advantage of combining multiple data types to study gene function and regulation. In the set of 1,563 modules covering 13,142 genes, most modules displayed strong coexpression, but functional and cis-regulatory coherence was less prevalent. Highly connected hub genes showed a significant enrichment toward embryo lethality and evidence for cross talk between different biological processes. Comparative analysis revealed that 58% of the modules showed conserved coexpression across multiple plants. Using module-based functional predictions, 5,562 genes were annotated, and an evaluation experiment disclosed that, based on 197 recently experimentally characterized genes, 38.1% of these functions could be inferred through the module context. Examples of confirmed genes of unknown function related to cell wall biogenesis, xylem and phloem pattern formation, cell cycle, hormone stimulus, and circadian rhythm highlight the potential to identify new gene functions. The module-based predictions offer new biological hypotheses for functionally unknown genes in Arabidopsis (1,701 genes) and six other plant species (43,621 genes). Furthermore, the inferred modules provide new insights into the conservation of coexpression and coregulation as well as a starting point for comparative functional annotation

    Functional profiling of genome-scale experiments: new approaches leading to a systemic analysis

    Full text link
    Tesis doctoral inédita. Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Biología Molecular. Fecha de lectura: 31-10-200
    • …
    corecore