104,066 research outputs found

    Tracking-Based Non-Parametric Background-Foreground Classification in a Chromaticity-Gradient Space

    Full text link
    This work presents a novel background-foreground classification technique based on adaptive non-parametric kernel estimation in a color-gradient space of components. By combining normalized color components with their gradients, shadows are efficiently suppressed from the results, while the luminance information in the moving objects is preserved. Moreover, a fast multi-region iterative tracking strategy applied over previously detected foreground regions allows to construct a robust foreground modeling, which combined with the background model increases noticeably the quality in the detections. The proposed strategy has been applied to different kind of sequences, obtaining satisfactory results in complex situations such as those given by dynamic backgrounds, illumination changes, shadows and multiple moving objects

    A coupled ETAS-I2GMM point process with applications to seismic fault detection

    Get PDF
    Epidemic-type aftershock sequence (ETAS) point process is a common model for the occurrence of earthquake events. The ETAS model consists of a stationary background Poisson process modeling spontaneous earthquakes and a triggering kernel representing the space–time-magnitude distribution of aftershocks. Popular nonparametric methods for estimation of the background intensity include histograms and kernel density estimators. While these methods are able to capture local spatial heterogeneity in the intensity of spontaneous events, they do not capture well patterns resulting from fault line structure over larger spatial scales. Here we propose a two-layer infinite Gaussian mixture model for clustering of earthquake events into fault-like groups over intermediate spatial scales. We introduce a Monte Carlo expectation-maximization (EM) algorithm for joint inference of the ETAS-I2GMM model and then apply the model to the Southern California Earthquake Catalog. We illustrate the advantages of the ETAS-I2GMM model in terms of both goodness of fit of the intensity and recovery of fault line clusters in the Community Fault Model 3.0 from earthquake occurrence data

    One-Class Support Measure Machines for Group Anomaly Detection

    Full text link
    We propose one-class support measure machines (OCSMMs) for group anomaly detection which aims at recognizing anomalous aggregate behaviors of data points. The OCSMMs generalize well-known one-class support vector machines (OCSVMs) to a space of probability measures. By formulating the problem as quantile estimation on distributions, we can establish an interesting connection to the OCSVMs and variable kernel density estimators (VKDEs) over the input space on which the distributions are defined, bridging the gap between large-margin methods and kernel density estimators. In particular, we show that various types of VKDEs can be considered as solutions to a class of regularization problems studied in this paper. Experiments on Sloan Digital Sky Survey dataset and High Energy Particle Physics dataset demonstrate the benefits of the proposed framework in real-world applications.Comment: Conference on Uncertainty in Artificial Intelligence (UAI2013

    Variational Downscaling, Fusion and Assimilation of Hydrometeorological States via Regularized Estimation

    Full text link
    Improved estimation of hydrometeorological states from down-sampled observations and background model forecasts in a noisy environment, has been a subject of growing research in the past decades. Here, we introduce a unified framework that ties together the problems of downscaling, data fusion and data assimilation as ill-posed inverse problems. This framework seeks solutions beyond the classic least squares estimation paradigms by imposing proper regularization, which are constraints consistent with the degree of smoothness and probabilistic structure of the underlying state. We review relevant regularization methods in derivative space and extend classic formulations of the aforementioned problems with particular emphasis on hydrologic and atmospheric applications. Informed by the statistical characteristics of the state variable of interest, the central results of the paper suggest that proper regularization can lead to a more accurate and stable recovery of the true state and hence more skillful forecasts. In particular, using the Tikhonov and Huber regularization in the derivative space, the promise of the proposed framework is demonstrated in static downscaling and fusion of synthetic multi-sensor precipitation data, while a data assimilation numerical experiment is presented using the heat equation in a variational setting
    corecore