37 research outputs found

    Video Stream Adaptation In Computer Vision Systems

    Get PDF
    Computer Vision (CV) has been deployed recently in a wide range of applications, including surveillance and automotive industries. According to a recent report, the market for CV technologies will grow to $33.3 billion by 2019. Surveillance and automotive industries share over 20% of this market. This dissertation considers the design of real-time CV systems with live video streaming, especially those over wireless and mobile networks. Such systems include video cameras/sensors and monitoring stations. The cameras should adapt their captured videos based on the events and/or available resources and time requirement. The monitoring station receives video streams from all cameras and run CV algorithms for decisions, warnings, control, and/or other actions. Real-time CV systems have constraints in power, computational, and communicational resources. Most video adaptation techniques considered the video distortion as the primary metric. In CV systems, however, the main objective is enhancing the event/object detection/recognition/tracking accuracy. The accuracy can essentially be thought of as the quality perceived by machines, as opposed to the human perceptual quality. High-Efficiency Video Coding (HEVC) is a recent encoding standard that seeks to address the limited communication bandwidth problem as a result of the popularity of High Definition (HD) videos. Unfortunately, HEVC adopts algorithms that greatly slow down the encoding process, and thus results in complications in real-time systems. This dissertation presents a method for adapting live video streams to limited and varying network bandwidth and energy resources. It analyzes and compares the rate-accuracy and rate-energy characteristics of various video streams adaptation techniques in CV systems. We model the video capturing, encoding, and transmission aspects and then provide an overall model of the power consumed by the video cameras and/or sensors. In addition to modeling the power consumption, we model the achieved bitrate of video encoding. We validate and analyze the power consumption models of each phase as well as the aggregate power consumption model through extensive experiments. The analysis includes examining individual parameters separately and examining the impacts of changing more than one parameter at a time. For HEVC, we develop an algorithm that predicts the size of the block without iterating through the exhaustive Rate Distortion Optimization (RDO) method. We demonstrate the effectiveness of the proposed algorithm in comparison with existing algorithms. The proposed algorithm achieves approximately 5 times the encoding speed of the RDO algorithm and 1.42 times the encoding speed of the fastest analyzed algorithm

    A Rate-Distortion Optimized Coding Method for Region of Interest in Scalable Video Coding

    Get PDF
    The support for region of interest (ROI) browsing, which allows dropping background part of video bitstreams, is a desirable feature for video applications. With the help of the slice group technique provided by H.264/SVC, rectangular ROI areas can be encoded into separate ROI slices. Additionally, by imposing certain constraints on motion estimation, ROI part of the bitstream can be decoded without background slices of the same layer. However, due to the additional spatial and temporal constraints applied to the encoder, overall coding efficiency would be significantly decreased. In this paper, a rate-distortion optimized (RDO) encoding scheme is proposed to improve the coding efficiency of ROI slices. When background slices are discarded, the proposed method uses base layer information to generate the prediction signal of the enhancement layer. Thus, the temporal constraints can be loosened during the encoding process. To do it in this way, the possible mismatch between generated reference frames and original ones is also considered during rate-distortion optimization so that a reasonable trade-off between coding efficiency and decoding drift can be made. Besides, a new Lagrange multiplier derivation method is developed for further coding performance improvement. Experimental results demonstrate that the proposed method achieves significant bitrate saving compared to existing methods

    Motion correlation based low complexity and low power schemes for video codec

    Get PDF
    制度:新 ; 報告番号:甲3750号 ; 学位の種類:博士(工学) ; 授与年月日:2012/11/19 ; 早大学位記番号:新6121Waseda Universit

    Low-Complexity Saliency Detection Algorithm for Fast Perceptual Video Coding

    Get PDF
    A low-complexity saliency detection algorithm for perceptual video coding is proposed; low-level encoding information is adopted as the characteristics of visual perception analysis. Firstly, this algorithm employs motion vector (MV) to extract temporal saliency region through fast MV noise filtering and translational MV checking procedure. Secondly, spatial saliency region is detected based on optimal prediction mode distributions in I-frame and P-frame. Then, it combines the spatiotemporal saliency detection results to define the video region of interest (VROI). The simulation results validate that the proposed algorithm can avoid a large amount of computation work in the visual perception characteristics analysis processing compared with other existing algorithms; it also has better performance in saliency detection for videos and can realize fast saliency detection. It can be used as a part of the video standard codec at medium-to-low bit-rates or combined with other algorithms in fast video coding

    Analysis of affine motion-compensated prediction and its application in aerial video coding

    Get PDF
    Motion-compensated prediction is used in video coding standards like High Efficiency Video Coding (HEVC) as one key element of data compression. Commonly, a purely translational motion model is employed. In order to also cover non-translational motion types like rotation or scaling (zoom) contained in aerial video sequences such as captured from unmanned aerial vehicles, an affine motion model can be applied. In this work, a model for affine motion-compensated prediction in video coding is derived by extending a model of purely translational motion-compensated prediction. Using the rate-distortion theory and the displacement estimation error caused by inaccurate affine motion parameter estimation, the minimum required bit rate for encoding the prediction error is determined. In this model, the affine transformation parameters are assumed to be affected by statistically independent estimation errors, which all follow a zero-mean Gaussian distributed probability density function (pdf). The joint pdf of the estimation errors is derived and transformed into the pdf of the location-dependent displacement estimation error in the image. The latter is related to the minimum required bit rate for encoding the prediction error. Similar to the derivations of the fully affine motion model, a four-parameter simplified affine model is investigated. It is of particular interest since such a model is considered for the upcoming video coding standard Versatile Video Coding (VVC) succeeding HEVC. As the simplified affine motion model is able to describe most motions contained in aerial surveillance videos, its application in video coding is justified. Both models provide valuable information about the minimum bit rate for encoding the prediction error as a function of affine estimation accuracies. Although the bit rate in motion-compensated prediction can be considerably reduced by using a motion model which is able to describe motion types occurring in the scene, the total video bit rate may remain quite high, depending on the motion estimation accuracy. Thus, at the example of aerial surveillance sequences, a codec independent region of interest- ( ROI -) based aerial video coding system is proposed that exploits the characteristic of such sequences. Assuming the captured scene to be planar, one frame can be projected into another using global motion compensation. Consequently, only new emerging areas have to be encoded. At the decoder, all new areas are registered into a so-called mosaic. From this, reconstructed frames are extracted and concatenated as a video sequence. To also preserve moving objects in the reconstructed video, local motion is detected and encoded in addition to the new areas. The proposed general ROI coding system was evaluated for very low and low bit rates between 100 and 5000 kbit/s for aerial sequences of HD resolution. It is able to reduce the bit rate by 90% compared to common HEVC coding of similar quality. Subjective tests confirm that the overall image quality of the ROI coding system exceeds that of a common HEVC encoder especially at very low bit rates below 1 Mbit/s. To prevent discontinuities introduced by inaccurate global motion estimation, as may be caused by radial lens distortion, a fully automatic in-loop radial distortion compensation is proposed. For this purpose, an unknown radial distortion compensation parameter that is constant for a group of frames is jointly estimated with the global motion. This parameter is optimized to minimize the distortions of the projections of frames in the mosaic. By this approach, the global motion compensation was improved by 0.27dB and discontinuities in the frames extracted from the mosaic are diminished. As an additional benefit, the generation of long-term mosaics becomes possible, constructed by more than 1500 aerial frames with unknown radial lens distortion and without any calibration or manual lens distortion compensation.Bewegungskompensierte Prädiktion wird in Videocodierstandards wie High Efficiency Video Coding (HEVC) als ein Schlüsselelement zur Datenkompression verwendet. Typischerweise kommt dabei ein rein translatorisches Bewegungsmodell zum Einsatz. Um auch nicht-translatorische Bewegungen wie Rotation oder Skalierung (Zoom) beschreiben zu können, welche beispielsweise in von unbemannten Luftfahrzeugen aufgezeichneten Luftbildvideosequenzen enthalten sind, kann ein affines Bewegungsmodell verwendet werden. In dieser Arbeit wird aufbauend auf einem rein translatorischen Bewegungsmodell ein Modell für affine bewegungskompensierte Prädiktion hergeleitet. Unter Verwendung der Raten-Verzerrungs-Theorie und des Verschiebungsschätzfehlers, welcher aus einer inexakten affinen Bewegungsschätzung resultiert, wird die minimal erforderliche Bitrate zur Codierung des Prädiktionsfehlers hergeleitet. Für die Modellierung wird angenommen, dass die sechs Parameter einer affinen Transformation durch statistisch unabhängige Schätzfehler gestört sind. Für jeden dieser Schätzfehler wird angenommen, dass die Wahrscheinlichkeitsdichteverteilung einer mittelwertfreien Gaußverteilung entspricht. Aus der Verbundwahrscheinlichkeitsdichte der Schätzfehler wird die Wahrscheinlichkeitsdichte des ortsabhängigen Verschiebungsschätzfehlers im Bild berechnet. Letztere wird schließlich zu der minimalen Bitrate in Beziehung gesetzt, welche für die Codierung des Prädiktionsfehlers benötigt wird. Analog zur obigen Ableitung des Modells für das voll-affine Bewegungsmodell wird ein vereinfachtes affines Bewegungsmodell mit vier Freiheitsgraden untersucht. Ein solches Modell wird derzeit auch im Rahmen der Standardisierung des HEVC-Nachfolgestandards Versatile Video Coding (VVC) evaluiert. Da das vereinfachte Modell bereits die meisten in Luftbildvideosequenzen vorkommenden Bewegungen abbilden kann, ist der Einsatz des vereinfachten affinen Modells in der Videocodierung gerechtfertigt. Beide Modelle liefern wertvolle Informationen über die minimal benötigte Bitrate zur Codierung des Prädiktionsfehlers in Abhängigkeit von der affinen Schätzgenauigkeit. Zwar kann die Bitrate mittels bewegungskompensierter Prädiktion durch Wahl eines geeigneten Bewegungsmodells und akkurater affiner Bewegungsschätzung stark reduziert werden, die verbleibende Gesamtbitrate kann allerdings dennoch relativ hoch sein. Deshalb wird am Beispiel von Luftbildvideosequenzen ein Regionen-von-Interesse- (ROI-) basiertes Codiersystem vorgeschlagen, welches spezielle Eigenschaften solcher Sequenzen ausnutzt. Unter der Annahme, dass eine aufgenommene Szene planar ist, kann ein Bild durch globale Bewegungskompensation in ein anderes projiziert werden. Deshalb müssen vom aktuellen Bild prinzipiell nur noch neu im Bild erscheinende Bereiche codiert werden. Am Decoder werden alle neuen Bildbereiche in einem gemeinsamen Mosaikbild registriert, aus dem schließlich die Einzelbilder der Videosequenz rekonstruiert werden können. Um auch lokale Bewegungen abzubilden, werden bewegte Objekte detektiert und zusätzlich zu neuen Bildbereichen als ROI codiert. Die Leistungsfähigkeit des ROI-Codiersystems wurde insbesondere für sehr niedrige und niedrige Bitraten von 100 bis 5000 kbit/s für Bilder in HD-Auflösung evaluiert. Im Vergleich zu einer gewöhnlichen HEVC-Codierung kann die Bitrate um 90% reduziert werden. Durch subjektive Tests wurde bestätigt, dass das ROI-Codiersystem insbesondere für sehr niedrige Bitraten von unter 1 Mbit/s deutlich leistungsfähiger in Bezug auf Detailauflösung und Gesamteindruck ist als ein herkömmliches HEVC-Referenzsystem. Um Diskontinuitäten in den rekonstruierten Videobildern zu vermeiden, die durch eine durch Linsenverzeichnungen induzierte ungenaue globale Bewegungsschätzung entstehen können, wird eine automatische Radialverzeichnungskorrektur vorgeschlagen. Dabei wird ein unbekannter, jedoch über mehrere Bilder konstanter Korrekturparameter gemeinsam mit der globalen Bewegung geschätzt. Dieser Parameter wird derart optimiert, dass die Projektionen der Bilder in das Mosaik möglichst wenig verzerrt werden. Daraus resultiert eine um 0,27dB verbesserte globale Bewegungskompensation, wodurch weniger Diskontinuitäten in den aus dem Mosaik rekonstruierten Bildern entstehen. Dieses Verfahren ermöglicht zusätzlich die Erstellung von Langzeitmosaiken aus über 1500 Luftbildern mit unbekannter Radialverzeichnung und ohne manuelle Korrektur

    Efficient Region-of-Interest Scalable Video Coding with Adaptive Bit-Rate Control

    Get PDF
    This work relates to the regions-of-interest (ROI) coding that is a desirable feature in future applications based on the scalable video coding, which is an extension of the H.264/MPEG-4 AVC standard. Due to the dramatic technological progress, there is a plurality of heterogeneous devices, which can be used for viewing a variety of video content. Devices such as smartphones and tablets are mostly resource-limited devices, which make it difficult to display high-quality content. Usually, the displayed video content contains one or more ROI(s), which should be adaptively selected from the preencoded scalable video bitstream. Thus, an efficient scalable ROI video coding scheme is proposed in this work, thereby enabling the extraction of the desired regions-of-interest and the adaptive setting of the desirable ROI location, size, and resolution. In addition, an adaptive bit-rate control is provided for the region-of-interest scalable video coding. The performance of the presented techniques is demonstrated and compared with the joint scalable video model reference software (JSVM 9.19), thereby showing significant bit-rate savings as a tradeoff for the relatively low PSNR degradation

    Computational Complexity Optimization on H.264 Scalable/Multiview Video Coding

    Get PDF
    The H.264/MPEG-4 Advanced Video Coding (AVC) standard is a high efficiency and flexible video coding standard compared to previous standards. The high efficiency is achieved by utilizing a comprehensive full search motion estimation method. Although the H.264 standard improves the visual quality at low bitrates, it enormously increases the computational complexity. The research described in this thesis focuses on optimization of the computational complexity on H.264 scalable and multiview video coding. Nowadays, video application areas range from multimedia messaging and mobile to high definition television, and they use different type of transmission systems. The Scalable Video Coding (SVC) extension of the H.264/AVC standard is able to scale the video stream in order to adapt to a variety of devices with different capabilities. Furthermore, a rate control scheme is utilized to improve the visual quality under the constraints of capability and channel bandwidth. However, the computational complexity is increased. A simplified rate control scheme is proposed to reduce the computational complexity. In the proposed scheme, the quantisation parameter can be computed directly instead of using the exhaustive Rate-Quantization model. The linear Mean Absolute Distortion (MAD) prediction model is used to predict the scene change, and the quantisation parameter will be increased directly by a threshold when the scene changes abruptly; otherwise, the comprehensive Rate-Quantisation model will be used. Results show that the optimized rate control scheme is efficient on time saving. Multiview Video Coding (MVC) is efficient on reducing the huge amount of data in multiple-view video coding. The inter-view reference frames from the adjacent views are exploited for prediction in addition to the temporal prediction. However, due to the increase in the number of reference frames, the computational complexity is also increased. In order to manage the reference frame efficiently, a phase correlation algorithm is utilized to remove the inefficient inter-view reference frame from the reference list. The dependency between the inter-view reference frame and current frame is decided based on the phase correlation coefficients. If the inter-view reference frame is highly related to the current frame, it is still enabled in the reference list; otherwise, it will be disabled. The experimental results show that the proposed scheme is efficient on time saving and without loss in visual quality and increase in bitrate. The proposed optimization algorithms are efficient in reducing the computational complexity on H.264/AVC extension. The low computational complexity algorithm is useful in the design of future video coding standards, especially on low power handheld devices

    Research and developments of distributed video coding

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.The recent developed Distributed Video Coding (DVC) is typically suitable for the applications such as wireless/wired video sensor network, mobile camera etc. where the traditional video coding standard is not feasible due to the constrained computation at the encoder. With DVC, the computational burden is moved from encoder to decoder. The compression efficiency is achieved via joint decoding at the decoder. The practical application of DVC is referred to Wyner-Ziv video coding (WZ) where the side information is available at the decoder to perform joint decoding. This join decoding inevitably causes a very complex decoder. In current WZ video coding issues, many of them emphasise how to improve the system coding performance but neglect the huge complexity caused at the decoder. The complexity of the decoder has direct influence to the system output. The beginning period of this research targets to optimise the decoder in pixel domain WZ video coding (PDWZ), while still achieves similar compression performance. More specifically, four issues are raised to optimise the input block size, the side information generation, the side information refinement process and the feedback channel respectively. The transform domain WZ video coding (TDWZ) has distinct superior performance to the normal PDWZ due to the exploitation in spatial direction during the encoding. However, since there is no motion estimation at the encoder in WZ video coding, the temporal correlation is not exploited at all at the encoder in all current WZ video coding issues. In the middle period of this research, the 3D DCT is adopted in the TDWZ to remove redundancy in both spatial and temporal direction thus to provide even higher coding performance. In the next step of this research, the performance of transform domain Distributed Multiview Video Coding (DMVC) is also investigated. Particularly, three types transform domain DMVC frameworks which are transform domain DMVC using TDWZ based 2D DCT, transform domain DMVC using TDWZ based on 3D DCT and transform domain residual DMVC using TDWZ based on 3D DCT are investigated respectively. One of the important applications of WZ coding principle is error-resilience. There have been several attempts to apply WZ error-resilient coding for current video coding standard e.g. H.264/AVC or MEPG 2. The final stage of this research is the design of WZ error-resilient scheme for wavelet based video codec. To balance the trade-off between error resilience ability and bandwidth consumption, the proposed scheme emphasises the protection of the Region of Interest (ROI) area. The efficiency of bandwidth utilisation is achieved by mutual efforts of WZ coding and sacrificing the quality of unimportant area. In summary, this research work contributed to achieves several advances in WZ video coding. First of all, it is targeting to build an efficient PDWZ with optimised decoder. Secondly, it aims to build an advanced TDWZ based on 3D DCT, which then is applied into multiview video coding to realise advanced transform domain DMVC. Finally, it aims to design an efficient error-resilient scheme for wavelet video codec, with which the trade-off between bandwidth consumption and error-resilience can be better balanced
    corecore