310 research outputs found

    Backbone colorings for networks: tree and path backbones

    Get PDF
    We introduce and study backbone colorings, a variation on classical vertex colorings: Given a graph G=(V,E)G=(V,E) and a spanning subgraph HH of GG (the backbone of GG), a backbone coloring for GG and HH is a proper vertex coloring V→{1,2,…}V\rightarrow \{1,2,\ldots\} of GG in which the colors assigned to adjacent vertices in HH differ by at least two. We study the cases where the backbone is either a spanning tree or a spanning path

    Backbone colorings along perfect matchings

    Get PDF
    Given a graph G=(V,E)G=(V,E) and a spanning subgraph HH of GG (the backbone of GG), a backbone coloring for GG and HH is a proper vertex coloring V→{1,2,…}V\rightarrow \{1,2,\ldots\} of GG in which the colors assigned to adjacent vertices in HH differ by at least two. In a recent paper, backbone colorings were introduced and studied in cases were the backbone is either a spanning tree or a spanning path. Here we study the case where the backbone is a perfect matching. We show that for perfect matching backbones of GG the number of colors needed for a backbone coloring of GG can roughly differ by a multiplicative factor of at most 43\frac{4}{3} from the chromatic number χ(G)\chi(G). We show that the computational complexity of the problem ``Given a graph GG with a perfect matching MM, and an integer ℓ\ell, is there a backbone coloring for GG and MM with at most ℓ\ell colors?'' jumps from polynomial to NP-complete between ℓ=3\ell=3 and ℓ=4\ell=4. Finally, we consider the case where GG is a planar graph

    On the phase transitions of graph coloring and independent sets

    Full text link
    We study combinatorial indicators related to the characteristic phase transitions associated with coloring a graph optimally and finding a maximum independent set. In particular, we investigate the role of the acyclic orientations of the graph in the hardness of finding the graph's chromatic number and independence number. We provide empirical evidence that, along a sequence of increasingly denser random graphs, the fraction of acyclic orientations that are `shortest' peaks when the chromatic number increases, and that such maxima tend to coincide with locally easiest instances of the problem. Similar evidence is provided concerning the `widest' acyclic orientations and the independence number

    A general framework for coloring problems: old results, new results, and open problems

    Get PDF
    In this survey paper we present a general framework for coloring problems that was introduced in a joint paper which the author presented at WG2003. We show how a number of different types of coloring problems, most of which have been motivated from frequency assignment, fit into this framework. We give a survey of the existing results, mainly based on and strongly biased by joint work of the author with several different groups of coauthors, include some new results, and discuss several open problems for each of the variants

    Conflict-Free Coloring of Planar Graphs

    Get PDF
    A conflict-free k-coloring of a graph assigns one of k different colors to some of the vertices such that, for every vertex v, there is a color that is assigned to exactly one vertex among v and v's neighbors. Such colorings have applications in wireless networking, robotics, and geometry, and are well-studied in graph theory. Here we study the natural problem of the conflict-free chromatic number chi_CF(G) (the smallest k for which conflict-free k-colorings exist). We provide results both for closed neighborhoods N[v], for which a vertex v is a member of its neighborhood, and for open neighborhoods N(v), for which vertex v is not a member of its neighborhood. For closed neighborhoods, we prove the conflict-free variant of the famous Hadwiger Conjecture: If an arbitrary graph G does not contain K_{k+1} as a minor, then chi_CF(G) <= k. For planar graphs, we obtain a tight worst-case bound: three colors are sometimes necessary and always sufficient. We also give a complete characterization of the computational complexity of conflict-free coloring. Deciding whether chi_CF(G)<= 1 is NP-complete for planar graphs G, but polynomial for outerplanar graphs. Furthermore, deciding whether chi_CF(G)<= 2 is NP-complete for planar graphs G, but always true for outerplanar graphs. For the bicriteria problem of minimizing the number of colored vertices subject to a given bound k on the number of colors, we give a full algorithmic characterization in terms of complexity and approximation for outerplanar and planar graphs. For open neighborhoods, we show that every planar bipartite graph has a conflict-free coloring with at most four colors; on the other hand, we prove that for k in {1,2,3}, it is NP-complete to decide whether a planar bipartite graph has a conflict-free k-coloring. Moreover, we establish that any general} planar graph has a conflict-free coloring with at most eight colors.Comment: 30 pages, 17 figures; full version (to appear in SIAM Journal on Discrete Mathematics) of extended abstract that appears in Proceeedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2017), pp. 1951-196
    • …
    corecore