1,497 research outputs found

    Back-to-back Converter Control of Grid-connected Wind Turbine to Mitigate Voltage Drop Caused by Faults

    Full text link
    Power electronic converters enable wind turbines, operating at variable speed, to generate electricity more efficiently. Among variable speed operating turbine generators, permanent magnetic synchronous generator (PMSG) has got more attentions due to low cost and maintenance requirements. In addition, the converter in a wind turbine with PMSG decouples the turbine from the power grid, which favors them for grid codes. In this paper, the performance of back-to-back (B2B) converter control of a wind turbine system with PMSG is investigated on a faulty grid. The switching strategy of the grid side converter is designed to improve voltage drop caused by the fault in the grid while the maximum available active power of wind turbine system is injected to the grid and the DC link voltage in the converter is regulated. The methodology of the converter control is elaborated in details and its performance on a sample faulty grid is assessed through simulation

    Intelligent voltage dip mitigation in power networks with distributed generation

    Get PDF
    Includes bibliographical references.The need for ensuring good power quality (PQ) cannot be over-emphasized in electrical power system operation and management. PQ problem is associated with any electrical distribution and utilization system that experiences any voltage, current or frequency deviation from normal operation. In the current power and energy scenario, voltage-related PQ disturbances like voltage dips are a fact which cannot be eliminated from electrical power systems since electrical faults, and disturbances are stochastic in nature. Voltage dip tends to lead to malfunction or shut down of costly and mandatory equipment and appliances in consumers’ systems causing significant financial losses for domestic, commercial and industrial consumers. It accounts for the disruption of both the performance and operation of sensitive electrical and electronic equipment, which reduces the efficiency and the productivity of power utilities and consumers across the globe. Voltage dips are usually experienced as a result of short duration reduction in the r.m.s. (r.m.s.- root mean square) value of the declared or nominal voltage at the power frequency and is usually followed by recovery of the voltage dip after few seconds. The IEEE recommended practice for monitoring electric power quality (IEEE Std. 1159-2009, revised version of June 2009), provides definitions to label an r.m.s. voltage disturbance based upon its duration and voltage magnitude. These disturbances can be classified into transient events such as voltage dips, swells and spikes. Other long duration r.m.s. voltage variations are mains failures, interruption, harmonic voltage distortion and steady-state overvoltages and undervoltages. This PhD research work deals with voltage dip phenomena only. Initially, the present power network was not designed to accommodate renewable distributed generation (RDG) units. The advent and deployment of RDG over recent years and high penetration of RDG has made the power network more complex and vulnerable to PQ disturbances. It is a well-known fact that the degree of newly introduced RDG has increased rapidly and growing further because of several reasons, which include the need to reduce environmental pollution and global warming caused by emission of carbon particles and greenhouse gases, alleviating transmission congestion and loss reduction. RDG ancillary services support especially voltage and reactive power support in electricity networks are currently being recognized, researched and found to be quite useful in voltage dip mitigation

    The Study on Hybrid Multi-Infeed HVDC System Connecting with Offshore Wind Farm

    Get PDF

    Application of Unified Power Flow Controller to Improve the Performance of Wind Energy Conversion System

    Get PDF
    This research introduces the unified power flow controller (UPFC) as a means to improve the overall performance of wind energy conversion system (WECS) through the development of an appropriate control algorithm. Also, application of the proposed UPFC control algorithm has been extended in this research to overcome some problems associated with the internal faults associated with WECS- voltage source converter (VSC), such as miss-fire, fire-through and dc-link faults

    Power Quality Improvement and Low Voltage Ride through Capability in Hybrid Wind-PV Farms Grid-Connected Using Dynamic Voltage Restorer

    Get PDF
    © 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission.This paper proposes the application of a dynamic voltage restorer (DVR) to enhance the power quality and improve the low voltage ride through (LVRT) capability of a three-phase medium-voltage network connected to a hybrid distribution generation system. In this system, the photovoltaic (PV) plant and the wind turbine generator (WTG) are connected to the same point of common coupling (PCC) with a sensitive load. The WTG consists of a DFIG generator connected to the network via a step-up transformer. The PV system is connected to the PCC via a two-stage energy conversion (dc-dc converter and dc-ac inverter). This topology allows, first, the extraction of maximum power based on the incremental inductance technique. Second, it allows the connection of the PV system to the public grid through a step-up transformer. In addition, the DVR based on fuzzy logic controller is connected to the same PCC. Different fault condition scenarios are tested for improving the efficiency and the quality of the power supply and compliance with the requirements of the LVRT grid code. The results of the LVRT capability, voltage stability, active power, reactive power, injected current, and dc link voltage, speed of turbine, and power factor at the PCC are presented with and without the contribution of the DVR system.Peer reviewe

    Virtual Synchronous Generator Operation of Full Converter Wind Turbine ‒ Control and Testing in a Hardware Based Emulation Platform

    Get PDF
    Wind is one of the most promising renewable energy forms that can be harvested to into the electrical power system. The installation has been rising worldwide in the past and will continue to steadily increase. The high penetration of wind energy has bought about a number of difficulties to the power system operation due to its stochastic nature, lack of exhibited inertia, and differing responses to the traditional energy sources in grid disturbances. Various grid support functions are then proposed to resolve the issues. One solution is to allow the renewable energy sources to behave like a traditional synchronous generator in the system, as a virtual synchronous generator (VSG). On the other hand, testing the control of the future power grid with high penetration renewable often relies on digital simulation or hardware-based experiments. But they either suffer from fidelity and numerical stability issues, or are bulky and inflexible. A power electronics based power system emulation platform is built in the University of Tennessee. This Hardware Testbed (HTB) allows testing of both system level and component level controls, with a good balance between the fidelity of the hardware-based testing platform, and the coverage of the digital simulation.This dissertation proposal investigates the VSG operation of the full converter wind turbine (FCWT), focusing on its control and testing in the HTB. Specifically, a FCWT emulator was developed using a single converter to include its physical model and control strategies. The existing grid support functions are also included to demonstrate their feasibility.The comprehensive VSG controls are then proposed for a FCWT with short term energy storage. The dynamic response of the FCWT can be comparable to the traditional generation during grid disturbance. The control can also allow the FCWT to be dispatched by the system operator, and even operate stand-alone without other grid sources.To study the system response under faults, a short circuit fault emulator was developed in the HTB platform. Four basic types of the short circuit faults with various fault impedance can be emulated using the emulator. The power system transient stability in terms of critical clearing time can be measured using the developed fault emulator

    A PWM current source-based DC transmission system for multiple wind turbine interfacing

    Get PDF
    A pulsewidth modulation (PWM) current source wind energy conversion system based on a parallel configuration for high voltage direct current application is proposed. A comparison between the parallel and series configurations for current source-based systems is investigated, which shows the merits of the proposed system. A new control technique for the PWM current source inverter is proposed. It can effectively control the average dc-link voltage with a feed-forward loop, while independently controlling reactive power according to grid code requirements. The system simulation confirms the performance of the proposed system with no interaction between wind turbine modules and satisfying performance with grid integration. Practical implementation further verifies the proposed inverter control. Finally, a brief comparison between conventional line-commutated converter-based systems and the proposed PWM current source converter-based system is presented

    Power Quality of Grid-Connected Wind Turbines with DFIG and Their Interaction with the Grid

    Get PDF
    • …
    corecore