9,972 research outputs found

    Back-Translation Sampling by Targeting Difficult Words in Neural Machine Translation

    Get PDF
    Neural Machine Translation has achieved state-of-the-art performance for several language pairs using a combination of parallel and synthetic data. Synthetic data is often generated by back-translating sentences randomly sampled from monolingual data using a reverse translation model. While back-translation has been shown to be very effective in many cases, it is not entirely clear why. In this work, we explore different aspects of back-translation, and show that words with high prediction loss during training benefit most from the addition of synthetic data. We introduce several variations of sampling strategies targeting difficult-to-predict words using prediction losses and frequencies of words. In addition, we also target the contexts of difficult words and sample sentences that are similar in context. Experimental results for the WMT news translation task show that our method improves translation quality by up to 1.7 and 1.2 Bleu points over back-translation using random sampling for German-English and English-German, respectively.Comment: 11 pages, 2 figures. Accepted at EMNLP 201

    Data Augmentation for Low-Resource Neural Machine Translation

    Get PDF
    The quality of a Neural Machine Translation system depends substantially on the availability of sizable parallel corpora. For low-resource language pairs this is not the case, resulting in poor translation quality. Inspired by work in computer vision, we propose a novel data augmentation approach that targets low-frequency words by generating new sentence pairs containing rare words in new, synthetically created contexts. Experimental results on simulated low-resource settings show that our method improves translation quality by up to 2.9 BLEU points over the baseline and up to 3.2 BLEU over back-translation.Comment: 5 pages, 2 figures, Accepted at ACL 201

    Learning to Translate in Real-time with Neural Machine Translation

    Get PDF
    Translating in real-time, a.k.a. simultaneous translation, outputs translation words before the input sentence ends, which is a challenging problem for conventional machine translation methods. We propose a neural machine translation (NMT) framework for simultaneous translation in which an agent learns to make decisions on when to translate from the interaction with a pre-trained NMT environment. To trade off quality and delay, we extensively explore various targets for delay and design a method for beam-search applicable in the simultaneous MT setting. Experiments against state-of-the-art baselines on two language pairs demonstrate the efficacy of the proposed framework both quantitatively and qualitatively.Comment: 10 pages, camera read

    Understanding and Enhancing the Use of Context for Machine Translation

    Get PDF
    To understand and infer meaning in language, neural models have to learn complicated nuances. Discovering distinctive linguistic phenomena from data is not an easy task. For instance, lexical ambiguity is a fundamental feature of language which is challenging to learn. Even more prominently, inferring the meaning of rare and unseen lexical units is difficult with neural networks. Meaning is often determined from context. With context, languages allow meaning to be conveyed even when the specific words used are not known by the reader. To model this learning process, a system has to learn from a few instances in context and be able to generalize well to unseen cases. The learning process is hindered when training data is scarce for a task. Even with sufficient data, learning patterns for the long tail of the lexical distribution is challenging. In this thesis, we focus on understanding certain potentials of contexts in neural models and design augmentation models to benefit from them. We focus on machine translation as an important instance of the more general language understanding problem. To translate from a source language to a target language, a neural model has to understand the meaning of constituents in the provided context and generate constituents with the same meanings in the target language. This task accentuates the value of capturing nuances of language and the necessity of generalization from few observations. The main problem we study in this thesis is what neural machine translation models learn from data and how we can devise more focused contexts to enhance this learning. Looking more in-depth into the role of context and the impact of data on learning models is essential to advance the NLP field. Moreover, it helps highlight the vulnerabilities of current neural networks and provides insights into designing more robust models.Comment: PhD dissertation defended on November 10th, 202

    Neural Machine Translation with Word Predictions

    Full text link
    In the encoder-decoder architecture for neural machine translation (NMT), the hidden states of the recurrent structures in the encoder and decoder carry the crucial information about the sentence.These vectors are generated by parameters which are updated by back-propagation of translation errors through time. We argue that propagating errors through the end-to-end recurrent structures are not a direct way of control the hidden vectors. In this paper, we propose to use word predictions as a mechanism for direct supervision. More specifically, we require these vectors to be able to predict the vocabulary in target sentence. Our simple mechanism ensures better representations in the encoder and decoder without using any extra data or annotation. It is also helpful in reducing the target side vocabulary and improving the decoding efficiency. Experiments on Chinese-English and German-English machine translation tasks show BLEU improvements by 4.53 and 1.3, respectivelyComment: Accepted at EMNLP201

    Adapting Sequence to Sequence models for Text Normalization in Social Media

    Full text link
    Social media offer an abundant source of valuable raw data, however informal writing can quickly become a bottleneck for many natural language processing (NLP) tasks. Off-the-shelf tools are usually trained on formal text and cannot explicitly handle noise found in short online posts. Moreover, the variety of frequently occurring linguistic variations presents several challenges, even for humans who might not be able to comprehend the meaning of such posts, especially when they contain slang and abbreviations. Text Normalization aims to transform online user-generated text to a canonical form. Current text normalization systems rely on string or phonetic similarity and classification models that work on a local fashion. We argue that processing contextual information is crucial for this task and introduce a social media text normalization hybrid word-character attention-based encoder-decoder model that can serve as a pre-processing step for NLP applications to adapt to noisy text in social media. Our character-based component is trained on synthetic adversarial examples that are designed to capture errors commonly found in online user-generated text. Experiments show that our model surpasses neural architectures designed for text normalization and achieves comparable performance with state-of-the-art related work.Comment: Accepted at the 13th International AAAI Conference on Web and Social Media (ICWSM 2019

    Exploring Diversity in Back Translation for Low-Resource Machine Translation

    Get PDF
    Back translation is one of the most widely used methods for improving the performance of neural machine translation systems. Recent research has sought to enhance the effectiveness of this method by increasing the 'diversity' of the generated translations. We argue that the definitions and metrics used to quantify 'diversity' in previous work have been insufficient. This work puts forward a more nuanced framework for understanding diversity in training data, splitting it into lexical diversity and syntactic diversity. We present novel metrics for measuring these different aspects of diversity and carry out empirical analysis into the effect of these types of diversity on final neural machine translation model performance for low-resource English↔\leftrightarrowTurkish and mid-resource English↔\leftrightarrowIcelandic. Our findings show that generating back translation using nucleus sampling results in higher final model performance, and that this method of generation has high levels of both lexical and syntactic diversity. We also find evidence that lexical diversity is more important than syntactic for back translation performance
    • …
    corecore