225 research outputs found

    Optimum back-pressure forging using servo die cushion

    Get PDF
    This study focused on utilizing a servo die cushion (in conjunction with a servo press) as a "back-pressure load generator," to determine its effect on shape accuracy of the formed part and total forming load in forward extrusion during cold forging. The effect of back-pressure load application was confirmed in experiments, and the optimum setting pattern of back-pressure load was considered to minimize both shape accuracy of the formed part and back-pressure energy, which was representative of forming energy using a sequential approximate optimization. The precise back-pressure load control by the servo die cushion enabled the ideal load-pattern setting for optimization to be achieved

    Production system to form, cut, and join by using a press machine for continuous carbon fiber-reinforced thermoplastic sheets

    Get PDF
    To build a processing method for textile carbon fiber reinforced thermoplastic (CFRTP) sheets, a production system to form, cut, and join the sheets by using a mechanical servo press machine was developed and examined. The system\u27s problems were analyzed, and attempts were made to solve them through a series of processes. In press forming, the effects of sheet geometry, fiber orientation, and slide motion on the forming of the variant-cross-sectional-beam, which has a narrow and wide part, were investigated. In addition, the shear-cutting method was chosen trimming the unnecessary region of the variant-cross-sectional-beam. For the joining process, a thermal welding method that uses a heating-plate was chosen. The closed-sectional-beam was fabricated by thermally welding a pair of the variant-cross-sectional-beams. Finally, the potential of the production system for textile CFRTP sheets using the mechanical servo press machine was discussed. © 2016 The Authors Polymer Composites published by Wiley Periodicals, Inc. on behalf of Society of Plastics Engineers.Embargo Period 12 month

    Effect of press slide speed and stroke on cup forming using a plain-woven carbon fiber thermoplastic composite sheet

    Get PDF
    Carbon-fiber-reinforced thermoplastic (CFRTP) is viewed as a prospective material for high-cycle production of CFRP parts. This paper deals with a process whereby a preheated thermoplastic plain-woven carbon fiber fabric sheet is formed into a circular cup by a mechanical servo-press. The effects of press parameters, specifically the bottom dead center and slide speed in the forming of CFRTP cup, on the press load, pressure, internal temperature, shape accuracy, and internal structure have been investigated. A plain-woven carbon-fiber-reinforced PA6 thermoplastic sheet was used. The sheet consisted of four layers of woven 3K carbon and had a thickness of 1 mm. The sheet was heated to 320°C under a halogen heater so that it would be around the recommended temperature for forming 260°C after transfer to the mold. The sheet was pressed into a circular cup shape by a cold mold while the periphery was cramped by a heated holder so as not to cool the sheet before it was pulled into the mold cave. Die clearance was designed considering the thickness increase due to the fiber concentration during the forming. By increasing the slide stroke to the bottom dead center, the applied press load was increased and the internal structure was improved, showing no voids. By increasing the slide speed, the final press load was reduced and shape accuracy was improved through a good pressure distribution on the mold. Measurement of the surface temperature of the sheet during the forming revealed that it remained in the melting region of the resin in the case of fast slide speed, but dropped below the melting temperature in the case of low slide speed. This difference apparently led to spring-in or spring-back after the forming. The experimental results indicate that appropriate balance among press speed, bottom dead center, and sheet temperature is important in the high-cycle forming of CFRTP. © 2016, Fuji Technology Press. All rights reserved

    サーボプレスを活用した背圧鍛造に関する研究

    Get PDF
    13301甲第4245号博士(工学)金沢大学博士論文本文Full 以下に掲載:International Journal of Automation Technology 9(2) pp.184-192 2015. Fuji Technology Press Ltd. 共著者:Kiichiro Kawamoto, Takeshi Yoneyama, Masato Okad

    Semisolid forging of steel components for automotive industry

    Get PDF
    Nowadays, globalisation enables a rapid uptake of the classical manufacturing and production technologies, thus making it much harder for European companies to compete with low labour costs of emerging countries. In order to remain competitive, these factories, such as OEM´s and automotive companies, have to either relocate their main production to low labour cost countries or invest in innovative production processes; in so doing they mainly allow lowering raw material consumption and production time while they perform high quality components. In this industrial framework, with the current trend in prices of raw material and their sources, near net shaping of mechanical components will become a key factor to get the desired competitiveness. Semisolid metal (SSM) forging is one of those near net shape techniques. It presents several advantages, such as energy efficiency, production rates, smooth die filling and low shrinkage porosity, which together lead to near net shape capability and thus to fewer manufacturing steps than in classical methods. The foregoing advantages have been tried and tested in the semisolid forging cell developed and implemented at the forming laboratory of Mondragon Unibertsitatea. The high quality components, obtained in a single step, show that thixo-lateral forging of steels is a robust and highly repeatable forming process with a great surface finishing and much more remarked details. Material savings of the 20% have been reported together with a substantial decrease of the forming forces. In addition, great mechanical properties have been achieved which brings the process closer to the desired final industrial application.Gaur egun bizi dugun globalizazio egoerak ekoizpen prozesuen hedapen eta arrakasta azkarra ahalbidetzen du, enpresa Europearren lehiakortasuna oztopatuz garapen bidean dauden herrialdeen aurrean. Lehiakorrak izaten jarraitzeko bide bakarra ekoizpen kostu txikiagoa duten lurraldetara deslokalizatzea edo ekoizpen prozesu berritzaileak ikertzea da. Azken honen bitartez jatorrizko materialen kontsumoa jaitsi eta ekoizpena handituko litzateke, beti ere ekoiztutako elementuen kalitatea mantenduz edo hobetuz. Ingurune industrial honetan, material eta energien prezioak etengabe gorantz doazela, ’near net shape‘ ekoizpen prozesuak lehiakortasuna berreskuratzeko funtsezko giltzarri izan daitezke. Teknika horietako bat da, hain zuzen, solido eta likido artean egindako konformaketa. Bere ezaugarri nagusia, soberakinik gabeko azken geometria lortzeko gaitasuna, dituen abantail guztien baturak ematen dio; eraginkortasun energetikoak, ekoizpen mailak, moldeak betetzeko duen era leunak eta uzkurtze porositate baxuak. Honi esker, azken piezak lortzeko prozesu klasikoek baino pauso gutxiago behar ditu prozesu erdisolidoak. Guzti hau frogatu eta egiaztatu da Mondragon Unibertsitateko ekoizpen laborategian beren beregi garatu eta ezarri den forja erdisolidorako zelulan. Bertan pauso bakarrean lortutako piezen kalitateak erakusten duen bezala, altzairuen forja erdisolidoa prozesu sendo eta errepikagarria da, xehetasunak zehazki erakusten dituena. Lortutako emaitzek % 20-ko material aurrezpenak erakusten dituzte formaketa indarren gutxitze nabarmen batekin batera. Gainera, piezen ezaugarri mekaniko bikainek azken helburu den prozesuaren industrializazioa gerturatzen dute.La globalización ha facilitado la rápida difusión y aceptación de los clásicos procesos de fabricación, lastrando la competitividad de las compañías Europeas frente a la de los países emergentes. Para seguir siendo competitivas, dichas empresas, deben deslocalizarse a países con menores costes de fabricación o investigar en procesos y productos innovadores que permitan disminuir el consumo de materias primas y el tiempo de fabricación, manteniendo, o incluso incrementando, la calidad de los componentes finales. En este entorno industrial, con la imparable tendencia al alza del precio de las materias primas y la energía, la fabricación ’near net shape‘ puede resultar un factor clave en la recuperación de la deseada competitividad. El conformado semisólido es precisamente una de ésas técnicas ’near net shape‘. En conjunto, su eficiencia energética, productividad, llenado de las huellas y baja porosidad le confieren la capacidad para obtener componentes con geometria final lo que significa reducir pasos de fabricación respecto a los procesos tradicionales. Esto es precisamente lo que se ha probado y demostrado en la célula de forja semisólida diseñada e implementada en el laboratorio de conformado de Mondragon Unibertsitatea. La calidad de los componentes obtenidos en un solo paso demuestra que la forja semisólida de acero es un proceso robusto y repetible con un excelente acabado superficial y detalles mucho más definidos. Ha permitido un ahorro de material del 20% junto con una disminución considerable de los esfuerzos de conformado. Además, las excelentes propiedades mecanicas obtenidas permiten acercar aún más el proceso al objetivo final, su industrialización

    Semi-Solid Forging of Steels: New insights into material behaviour evolution and industrialisation

    Get PDF
    Tanto la globalización como la tendencia europea de reducir a cero el impacto medioambiental, así como la reducción de las emisiones, ha generado un gran impacto tanto en las acerías como en los fabricantes de componentes para automoción. De manera que, para seguir siendo competitivos, la creación de materiales de mayor resistencia en relación con su peso y procesos de fabricación más eficientes parece vital. En este escenario, la Forja de aceros en estado Semi-Solido (SSF) puede reivindicarse como una posibilidad real para mantener este tipo de industria al frente del mercado. Esta tecnología ha sido capaz de producir componentes de automoción de acero ahorrando material y energía a la vez que se obtenían propiedades mecánicas similares a los componentes forjados. A pesar de ello, a día de hoy, la producción de estos componentes vía SSF no supera las 50 piezas. Además, la evolución del material durante el proceso y la causa de la facilidad observada del material para fluir es aún una incógnita. Teniendo en cuenta el potencial del proceso, esta tesis se ha enfocado en intentar dar una explicación al comportamiento del material a la vez que se han fabricado un número considerable de componentes para demostrar la repetitividad y durabilidad de los materiales y equipamientos utilizados. Los resultados de la tesis, por tanto, están orientados a acercar el proceso de SSF a la industria. En cuanto al análisis de comportamiento del material, se han propuesto y analizado diferentes hipótesis. Ni el azufre ni el fenómeno “incipient melting” parecen ser los responsables del ablandamiento observado durante la fabricación de componentes con el 42CrMo4. En cualquier caso, el “incipient melting” sí que parece mejorar la fluidez del material en algunas aleaciones y a ciertas condiciones. En cuanto a la hipótesis del calentamiento adiabatico, a pesar de ver un incremento de temperatura significativo debido a altas y localizadas deformaciones y velocidades, no se sabe si se ha generado líquido. Por lo tanto, se necesitan mas experimentos para para aceptar o descartar definitivamente su influencia. En lo que a la fabricación de componentes se refiere, además de aceros de medio carbono, se ha podido deformar el acero inoxidable “Alloy 28” vía SSF. En este último caso, que es de hecho un acero bastante difícil de forjar, el “incipient melting” parece haber incrementado la fluidez del material durante el llenado. Además, se ha fabricado un lote de 250 componentes obteniendo un ahorro en el coste de producción y buenas propiedades mecánicas a parte de la repetitividad deseada del proceso, así como una mínima degradación de las huellas

    Advances in Plastic Forming of Metals

    Get PDF
    The forming of metals through plastic deformation comprises a family of methods that produce components through the re-shaping of input stock, oftentimes with little waste. Therefore, forming is one of the most efficient and economical manufacturing process families available. A myriad of forming processes exist in this family. In conjunction with their countless existing successful applications and their relatively low energy requirements, these processes are an indispensable part of our future. However, despite the vast accumulated know-how, research challenges remain, be they related to the forming of new materials (e.g., for light-weight transportation applications), pushing the boundaries of what is doable, reducing the intermediate steps and/or scrap, or further enhancing the environmental friendliness. The purpose of this book is to collect expert views and contributions on the current state-of-the-art of plastic forming, thus highlighting contemporary challenges and offering ideas and solutions

    Volume 2 – Conference

    Get PDF
    We are pleased to present the conference proceedings for the 12th edition of the International Fluid Power Conference (IFK). The IFK is one of the world’s most significant scientific conferences on fluid power control technology and systems. It offers a common platform for the presentation and discussion of trends and innovations to manufacturers, users and scientists. The Chair of Fluid-Mechatronic Systems at the TU Dresden is organizing and hosting the IFK for the sixth time. Supporting hosts are the Fluid Power Association of the German Engineering Federation (VDMA), Dresdner Verein zur Förderung der Fluidtechnik e. V. (DVF) and GWT-TUD GmbH. The organization and the conference location alternates every two years between the Chair of Fluid-Mechatronic Systems in Dresden and the Institute for Fluid Power Drives and Systems in Aachen. The symposium on the first day is dedicated to presentations focused on methodology and fundamental research. The two following conference days offer a wide variety of application and technology orientated papers about the latest state of the art in fluid power. It is this combination that makes the IFK a unique and excellent forum for the exchange of academic research and industrial application experience. A simultaneously ongoing exhibition offers the possibility to get product information and to have individual talks with manufacturers. The theme of the 12th IFK is “Fluid Power – Future Technology”, covering topics that enable the development of 5G-ready, cost-efficient and demand-driven structures, as well as individual decentralized drives. Another topic is the real-time data exchange that allows the application of numerous predictive maintenance strategies, which will significantly increase the availability of fluid power systems and their elements and ensure their improved lifetime performance. We create an atmosphere for casual exchange by offering a vast frame and cultural program. This includes a get-together, a conference banquet, laboratory festivities and some physical activities such as jogging in Dresden’s old town.:Group 1 | 2: Digital systems Group 3: Novel displacement machines Group 4: Industrial applications Group 5: Components Group 6: Predictive maintenance Group 7: Electro-hydraulic actuatorsDer Download des Gesamtbandes wird erst nach der Konferenz ab 15. Oktober 2020 möglich sein.:Group 1 | 2: Digital systems Group 3: Novel displacement machines Group 4: Industrial applications Group 5: Components Group 6: Predictive maintenance Group 7: Electro-hydraulic actuator

    Aeronautical Engineering: A special bibliography, supplement 60

    Get PDF
    This bibliography lists 284 reports, articles, and other documents introduced into the NASA scientific and technical information system in July 1975

    Nonterrestrial utilization of materials: Automated space manufacturing facility

    Get PDF
    Four areas related to the nonterrestrial use of materials are included: (1) material resources needed for feedstock in an orbital manufacturing facility, (2) required initial components of a nonterrestrial manufacturing facility, (3) growth and productive capability of such a facility, and (4) automation and robotics requirements of the facility
    corecore