310 research outputs found

    Advances in Rotating Electric Machines

    Get PDF
    It is difficult to imagine a modern society without rotating electric machines. Their use has been increasing not only in the traditional fields of application but also in more contemporary fields, including renewable energy conversion systems, electric aircraft, aerospace, electric vehicles, unmanned propulsion systems, robotics, etc. This has contributed to advances in the materials, design methodologies, modeling tools, and manufacturing processes of current electric machines, which are characterized by high compactness, low weight, high power density, high torque density, and high reliability. On the other hand, the growing use of electric machines and drives in more critical applications has pushed forward the research in the area of condition monitoring and fault tolerance, leading to the development of more reliable diagnostic techniques and more fault-tolerant machines. This book presents and disseminates the most recent advances related to the theory, design, modeling, application, control, and condition monitoring of all types of rotating electric machines

    ๋ถ„์‚ฐ๋œ ๋กœํ„ฐ๋กœ ๊ตฌ๋™๋˜๋Š” ๋น„ํ–‰ ์Šค์ผˆ๋ ˆํ†ค ์‹œ์Šคํ…œ์˜ ๋””์ž์ธ ์ƒํƒœ์ถ”์ • ๋ฐ ์ œ์–ด

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€,2020. 2. ์ด๋™์ค€.In this thesis, we present key theoretical components for realizing flying aerial skeleton system called LASDRA (large-size aerial skeleton with distributed rotor actuation). Aerial skeletons are articulated aerial robots actuated by distributed rotors including both ground connected type and flying type. These systems have recently attracted interest and are being actively researched in several research groups, with the expectation of applying those for aerial manipulation in distant/narrow places, or for the performance with entertaining purpose such as drone shows. Among the aerial skeleton systems, LASDRA system, proposed by our group has some significant advantages over the other skeleton systems that it is capable of free SE(3) motion by omni-directional wrench generation of each link, and also the system can be operated with wide range of configuration because of the 3DOF (degrees of freedom) inter-link rotation enabled by cable connection among the link modules. To realize this LASDRA system, following three components are crucial: 1) a link module that can produce omni-directional force and torque and enough feasible wrench space; 2) pose and posture estimation algorithm for an articulated system with high degrees of freedom; and 3) a motion generation framework that can provide seemingly natural motion while being able to generate desired motion (e.g., linear and angular velocity) for the entire body. The main contributions of this thesis is theoretically developing these three components, and verifying these through outdoor flight experiment with a real LASDRA system. First of all, a link module for the LASDRA system is designed with proposed constrained optimization problem, maximizing the guaranteed feasible force and torque for any direction while also incorporating some constraints (e.g., avoiding inter-rotor air-flow interference) to directly obtain feasible solution. Also, an issue of ESC-induced (electronic speed control) singularity is first introduced in the literature which is inevitably caused by bi-directional thrust generation with sensorless actuators, and handled with a novel control allocation called selective mapping. Then for the state estimation of the entire LASDRA system, constrained Kalman filter based estimation algorithm is proposed that can provide estimation result satisfying kinematic constraint of the system, also along with a semi-distributed version of the algorithm to endow with system scalability. Lastly, CPG-based motion generation framework is presented that can generate natural biomimetic motion, and by exploiting the inverse CPG model obtained with machine learning method, it becomes possible to generate certain desired motion while still making CPG generated natural motion.๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋น„ํ–‰ ์Šค์ผˆ๋ ˆํ†ค ์‹œ์Šคํ…œ LASDRA (large-size aerial skeleton with distributed rotor actuation) ์˜ ๊ตฌํ˜„์„ ์œ„ํ•ด ์š”๊ตฌ๋˜๋Š” ํ•ต์‹ฌ ๊ธฐ๋ฒ•๋“ค์„ ์ œ์•ˆํ•˜๋ฉฐ, ์ด๋ฅผ ์‹ค์ œ LASDRA ์‹œ์Šคํ…œ์˜ ์‹ค์™ธ ๋น„ํ–‰์„ ํ†ตํ•ด ๊ฒ€์ฆํ•œ๋‹ค. ์ œ์•ˆ๋œ ๊ธฐ๋ฒ•์€ 1) ์ „๋ฐฉํ–ฅ์œผ๋กœ ํž˜๊ณผ ํ† ํฌ๋ฅผ ๋‚ผ ์ˆ˜ ์žˆ๊ณ  ์ถฉ๋ถ„ํ•œ ๊ฐ€์šฉ ๋ Œ์น˜๊ณต๊ฐ„์„ ๊ฐ€์ง„ ๋งํฌ ๋ชจ๋“ˆ, 2) ๋†’์€ ์ž์œ ๋„์˜ ๋‹ค๊ด€์ ˆ๊ตฌ์กฐ ์‹œ์Šคํ…œ์„ ์œ„ํ•œ ์œ„์น˜ ๋ฐ ์ž์„ธ ์ถ”์ • ์•Œ๊ณ ๋ฆฌ์ฆ˜, 3) ์ž์—ฐ์Šค๋Ÿฌ์šด ์›€์ง์ž„์„ ๋‚ด๋Š” ๋™์‹œ์— ์ „์ฒด ์‹œ์Šคํ…œ์ด ์†๋„, ๊ฐ์†๋„ ๋“ฑ ์›ํ•˜๋Š” ์›€์ง์ž„์„ ๋‚ด๋„๋ก ํ•  ์ˆ˜ ์žˆ๋Š” ๋ชจ์…˜ ์ƒ์„ฑ ํ”„๋ ˆ์ž„์›Œํฌ๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์šฐ์„  ๋งํฌ ๋ชจ๋“ˆ์˜ ๋””์ž์ธ์„ ์œ„ํ•ด ์ „๋ฐฉํ–ฅ์œผ๋กœ ๋ณด์žฅ๋˜๋Š” ํž˜๊ณผ ํ† ํฌ์˜ ํฌ๊ธฐ๋ฅผ ์ตœ๋Œ€ํ™”ํ•˜๋Š” ๊ตฌ์† ์ตœ์ ํ™”๋ฅผ ์‚ฌ์šฉํ•˜๊ณ , ์‹ค์ œ ์ ์šฉ๊ฐ€๋Šฅํ•œ ํ•ด๋ฅผ ์–ป๊ธฐ ์œ„ํ•ด ๋ช‡๊ฐ€์ง€ ๊ตฌ์†์กฐ๊ฑด(๋กœํ„ฐ ๊ฐ„ ๊ณต๊ธฐ ํ๋ฆ„ ๊ฐ„์„ญ์˜ ํšŒํ”ผ ๋“ฑ)์„ ๊ณ ๋ คํ•œ๋‹ค. ๋˜ํ•œ ์„ผ์„œ๊ฐ€ ์—†๋Š” ์•ก์ธ„์—์ดํ„ฐ๋กœ ์–‘๋ฐฉํ–ฅ ์ถ”๋ ฅ์„ ๋‚ด๋Š” ๊ฒƒ์—์„œ ์•ผ๊ธฐ๋˜๋Š” ESC ์œ ๋ฐœ ํŠน์ด์  (ESC-induced singularity) ์ด๋ผ๋Š” ๋ฌธ์ œ๋ฅผ ์ฒ˜์Œ์œผ๋กœ ์†Œ๊ฐœํ•˜๊ณ , ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์„ ํƒ์  ๋งตํ•‘ (selective mapping) ์ด๋ผ๋Š” ๊ธฐ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ์ „์ฒด LASDRA ์‹œ์Šคํ…œ์˜ ์ƒํƒœ์ถ”์ •์„ ์œ„ํ•ด ์‹œ์Šคํ…œ์˜ ๊ธฐ๊ตฌํ•™์  ๊ตฌ์†์กฐ๊ฑด์„ ๋งŒ์กฑํ•˜๋Š” ๊ฒฐ๊ณผ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ๋„๋ก ๊ตฌ์† ์นผ๋งŒ ํ•„ํ„ฐ ๊ธฐ๋ฐ˜์˜ ์ƒํƒœ์ถ”์ • ๊ธฐ๋ฒ•์„ ์ œ์‹œํ•˜๊ณ , ์‹œ์Šคํ…œ ํ™•์žฅ์„ฑ์„ ๊ณ ๋ คํ•˜์—ฌ ๋ฐ˜ ๋ถ„์‚ฐ (semi-distributed) ๊ฐœ๋…์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ•จ๊ป˜ ์ œ์‹œํ•œ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ž์—ฐ์Šค๋Ÿฌ์šด ์›€์ง์ž„์˜ ์ƒ์„ฑ์„ ์œ„ํ•˜์—ฌ CPG ๊ธฐ๋ฐ˜์˜ ๋ชจ์…˜ ์ƒ์„ฑ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•˜๋ฉฐ, ๊ธฐ๊ณ„ ํ•™์Šต ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด CPG ์—ญ์—ฐ์‚ฐ ๋ชจ๋ธ์„ ์–ป์Œ์œผ๋กœ์จ ์ „์ฒด ์‹œ์Šคํ…œ์ด ์›ํ•˜๋Š” ์›€์ง์ž„์„ ๋‚ผ ์ˆ˜ ์žˆ๋„๋ก ํ•œ๋‹ค.1 Introduction 1 1.1 Motivation and Background 1 1.2 Research Problems and Approach 3 1.3 Preview of Contributions 5 2 Omni-Directional Aerial Robot 7 2.1 Introduction 7 2.2 Mechanical Design 12 2.2.1 Design Description 12 2.2.2 Wrench-Maximizing Design Optimization 13 2.3 System Modeling and Control Design 20 2.3.1 System Modeling 20 2.3.2 Pose Trajectory Tracking Control 22 2.3.3 Hybrid Pose/Wrench Control 22 2.3.4 PSPM-Based Teleoperation 24 2.4 Control Allocation with Selective Mapping 27 2.4.1 Infinity-Norm Minimization 27 2.4.2 ESC-Induced Singularity and Selective Mapping 29 2.5 Experiment 38 2.5.1 System Setup 38 2.5.2 Experiment Results 41 2.6 Conclusion 49 3 Pose and Posture Estimation of an Aerial Skeleton System 51 3.1 Introduction 51 3.2 Preliminary 53 3.3 Pose and Posture Estimation 55 3.3.1 Estimation Algorithm via SCKF 55 3.3.2 Semi-Distributed Version of Algorithm 59 3.4 Simulation 62 3.5 Experiment 65 3.5.1 System Setup 65 3.5.2 Experiment of SCKF-Based Estimation Algorithm 66 3.6 Conclusion 69 4 CPG-Based Motion Generation 71 4.1 Introduction 71 4.2 Description of Entire Framework 75 4.2.1 LASDRA System 75 4.2.2 Snake-Like Robot & Pivotboard 77 4.3 CPG Model 79 4.3.1 LASDRA System 79 4.3.2 Snake-Like Robot 80 4.3.3 Pivotboard 83 4.4 Target Pose Calculation with Expected Physics 84 4.5 Inverse Model Learning 86 4.5.1 LASDRA System 86 4.5.2 Snake-Like Robot 89 4.5.3 Pivotboard 90 4.6 CPG Parameter Adaptation 93 4.7 Simulation 94 4.7.1 LASDRA System 94 4.7.2 Snake-Like Robot & Pivotboard 97 4.8 Conclusion 101 5 Outdoor Flight Experiment of the F-LASDRA System 103 5.1 System Setup 103 5.2 Experiment Results 104 6 Conclusion 111 6.1 Summary 111 6.2 Future Works 112Docto

    Acta Technica Jaurinensis 2013

    Get PDF

    Generalized harmonic modeling technique for 2D electromagnetic problems : applied to the design of a direct-drive active suspension system

    Get PDF
    The introduction of permanent magnets has significantly improved the performance and efficiency of advanced actuation systems. The demand for these systems in the industry is increasing and the specifications are becoming more challenging. Accurate and fast modeling of the electromagnetic phenomena is therefore required during the design stage to allow for multi-objective optimization of various topologies. This thesis presents a generalized technique to design and analyze 2D electromagnetic problems based on harmonic modeling. Therefore, the prior art is extended and unified to create a methodology which can be applied to almost any problem in the Cartesian, polar and axisymmetric coordinate system. This generalization allows for the automatic solving of complicated boundary value problems within a very short computation time. This method can be applied to a broad class of classical machines, however, more advanced and complex electromagnetic actuation systems can be designed or analyzed as well. The newly developed framework, based on the generalized harmonic modeling technique, is extensively demonstrated on slotted tubular permanent magnet actuators. As such, numerous tubular topologies, magnetization and winding configurations are analyzed. Additionally, force profiles, emf waveforms and synchronous inductances are accurately predicted. The results are within approximately 5 % of the non-linear finite element analysis including the slotted stator effects. A unique passive damping solution is integrated within the tubular permanent magnet actuator using eddy current damping. This is achieved by inserting conductive rings in the stator slot openings to provide a passive damping force without compromising the tubular actuatorโ€™s performance. This novel idea of integrating conductive rings is secured in a patent. A method to calculate the damping ratio due to these conductive rings is presented where the position, velocity and temperature dependencies are shown. The developed framework is applied to the design and optimization of a directdrive electromagnetic active suspension system for passenger cars. This innovative solution is an alternative for currently applied active hydraulic or pneumatic suspension systems for improvement of the comfort and handling of a vehicle. The electromagnetic system provides an improved bandwidth which is typically 20 times higher together with a power consumption which is approximately five times lower. As such, the proposed system eliminates two of the major drawbacks that prevented the widespread commercial breakthrough of active suspension systems. The direct-drive electromagnetic suspension system is composed of a coil spring in parallel with a tubular permanent magnet actuator with integrated eddy current damping. The coil spring supports the sprung mass while the tubular actuator either consumes, by applying direct-drive vertical forces, or regenerates energy. The applied tubular actuator is designed using a non-linear constrained optimization algorithm in combination with the developed analytical framework. This ensured the design with the highest force density together with low power consumption. In case of a power breakdown, the integrated eddy current damping in the slot openings of this tubular actuator, together with the passive coil spring, creates a passive suspension system to guarantee fail-safe operation. To validate the performance of the novel proof-of-concept electromagnetic suspension system, a prototype is constructed and a full-scale quarter car test setup is developed which mimics the vehicle corner of a BMW 530i. Consequently, controllers are designed for the active suspension strut for improvement of either comfort or handling. Finally, the suspension system is installed as a front suspension in a BMW 530i test vehicle. Both the extensive experimental laboratory and on-road tests prove the capability of the novel direct-drive electromagnetic active suspension system. Furthermore, it demonstrates the applicability of the developed modeling technique for design and optimization of electromagnetic actuators and devices

    Improving Dynamics Estimations and Low Level Torque Control Through Inertial Sensing

    Get PDF
    In 1996, professors J. Edward Colgate and Michael Peshkin invented the cobots as robotic equipment safe enough for interacting with human workers. Twenty years later, collaborative robots are highly demanded in the packaging industry, and have already been massively adopted by companies facing issues for meeting customer demands. Meantime, cobots are still making they way into environments where value-added tasks require more complex interactions between robots and human operators. For other applications like a rescue mission in a disaster scenario, robots have to deal with highly dynamic environments and uneven terrains. All these applications require robust, fine and fast control of the interaction forces, specially in the case of locomotion on uneven terrains in an environment where unexpected events can occur. Such interaction forces can only be modulated through the control of joint internal torques in the case of under-actuated systems which is typically the case of mobile robots. For that purpose, an efficient low level joint torque control is one of the critical requirements, and motivated the research presented here. This thesis addresses a thorough model analysis of a typical low level joint actuation sub-system, powered by a Brushless DC motor and suitable for torque control. It then proposes procedure improvements in the identification of model parameters, particularly challenging in the case of coupled joints, in view of improving their control. Along with these procedures, it proposes novel methods for the calibration of inertial sensors, as well as the use of such sensors in the estimation of joint torques

    Recent Progress in Some Aircraft Technologies

    Get PDF
    The book describes the recent progress in some engine technologies and active flow control and morphing technologies and in topics related to aeroacoustics and aircraft controllers. Both the researchers and students should find the material useful in their work

    Sliding Mode Control

    Get PDF
    The main objective of this monograph is to present a broad range of well worked out, recent application studies as well as theoretical contributions in the field of sliding mode control system analysis and design. The contributions presented here include new theoretical developments as well as successful applications of variable structure controllers primarily in the field of power electronics, electric drives and motion steering systems. They enrich the current state of the art, and motivate and encourage new ideas and solutions in the sliding mode control area

    Third International Symposium on Magnetic Suspension Technology

    Get PDF
    In order to examine the state of technology of all areas of magnetic suspension and to review recent developments in sensors, controls, superconducting magnet technology, and design/implementation practices, the Third International Symposium on Magnetic Suspension Technology was held at the Holiday Inn Capital Plaza in Tallahassee, Florida on 13-15 Dec. 1995. The symposium included 19 sessions in which a total of 55 papers were presented. The technical sessions covered the areas of bearings, superconductivity, vibration isolation, maglev, controls, space applications, general applications, bearing/actuator design, modeling, precision applications, electromagnetic launch and hypersonic maglev, applications of superconductivity, and sensors

    System design of the Pioneer Venus spacecraft. Volume 9: Attitude control/mechanisms subsystems studies

    Get PDF
    The Pioneer Venus mission study was conducted for a probe spacecraft and an orbiter spacecraft to be launched by either a Thor/Delta or an Atlas/Centaur launch vehicle. Both spacecraft are spin stabilized. The spin speed is controlled by ground commands to as low as 5 rpm for science instrument scanning on the orbiter and as high as 71 rpm for small probes released from the probe bus. A major objective in the design of the attitude control and mechanism subsystem (ACMS) was to provide, in the interest of costs, maximum commonality of the elements between the probe bus and orbiter spacecraft configurations. This design study was made considering the use of either launch vehicle. The basic functional requirements of the ACMS are derived from spin axis pointing and spin speed control requirements implicit in the acquisition, cruise, encounter and orbital phases of the Pioneer Venus missions
    • โ€ฆ
    corecore