329 research outputs found

    BV solutions to a hyperbolic system of balance laws with logistic growth

    Full text link
    We study BV solutions for a 2×22\times2 system of hyperbolic balance laws. We show that when initial data have small total variation on (,)(-\infty,\infty) and small amplitude, and decay sufficiently fast to a constant equilibrium state as x|x|\rightarrow\infty, a Cauchy problem (with generic data) has a unique admissible BV solution defined globally in time. Here the solution is admissible in the sense that its shock waves satisfy the Lax entropy condition. We also study asymptotic behavior of solutions. In particular, we obtain a time decay rate for the total variation of the solution, and a convergence rate of the solution to its time asymptotic solution. Our system is a modification of a Keller-Segel type chemotaxis model. Its flux function possesses new features when comparing to the well-known model of Euler equations with damping. This may help to shed light on how to extend the study to a general system of hyperbolic balance laws in the future

    Hyperbolic Balance Laws: modeling, analysis, and numerics (hybrid meeting)

    Get PDF
    This workshop brought together leading experts, as well as the most promising young researchers, working on nonlinear hyperbolic balance laws. The meeting focused on addressing new cutting-edge research in modeling, analysis, and numerics. Particular topics included ill-/well-posedness, randomness and multiscale modeling, flows in a moving domain, free boundary problems, games and control

    Continuum Mechanics and Thermodynamics in the Hamilton and the Godunov-type Formulations

    Full text link
    Continuum mechanics with dislocations, with the Cattaneo type heat conduction, with mass transfer, and with electromagnetic fields is put into the Hamiltonian form and into the form of the Godunov type system of the first order, symmetric hyperbolic partial differential equations (SHTC equations). The compatibility with thermodynamics of the time reversible part of the governing equations is mathematically expressed in the former formulation as degeneracy of the Hamiltonian structure and in the latter formulation as the existence of a companion conservation law. In both formulations the time irreversible part represents gradient dynamics. The Godunov type formulation brings the mathematical rigor (the well-posedness of the Cauchy initial value problem) and the possibility to discretize while keeping the physical content of the governing equations (the Godunov finite volume discretization)

    Modeling Shallow Water Flows on General Terrains

    Full text link
    A formulation of the shallow water equations adapted to general complex terrains is proposed. Its derivation starts from the observation that the typical approach of depth integrating the Navier-Stokes equations along the direction of gravity forces is not exact in the general case of a tilted curved bottom. We claim that an integration path that better adapts to the shallow water hypotheses follows the "cross-flow" surface, i.e., a surface that is normal to the velocity field at any point of the domain. Because of the implicitness of this definition, we approximate this "cross-flow" path by performing depth integration along a local direction normal to the bottom surface, and propose a rigorous derivation of this approximation and its numerical solution as an essential step for the future development of the full "cross-flow" integration procedure. We start by defining a local coordinate system, anchored on the bottom surface to derive a covariant form of the Navier-Stokes equations. Depth integration along the local normals yields a covariant version of the shallow water equations, which is characterized by flux functions and source terms that vary in space because of the surface metric coefficients and related derivatives. The proposed model is discretized with a first order FORCE-type Godunov Finite Volume scheme that allows implementation of spatially variable fluxes. We investigate the validity of our SW model and the effects of the bottom geometry by means of three synthetic test cases that exhibit non negligible slopes and surface curvatures. The results show the importance of taking into consideration bottom geometry even for relatively mild and slowly varying curvatures

    Hyperbolic Conservation Laws in Continuum Physics

    Full text link

    Pointwise Green's function bounds and stability of relaxation shocks

    Full text link
    We establish sharp pointwise Green's function bounds and consequent linearized and nonlinear stability for smooth traveling front solutions, or relaxation shocks, of general hyperbolic relaxation systems of dissipative type, under the necessary assumptions ([G,Z.1,Z.4]) of spectral stability, i.e., stable point spectrum of the linearized operator about the wave, and hyperbolic stability of the corresponding ideal shock of the associated equilibrium system. This yields, in particular, nonlinear stability of weak relaxation shocks of the discrete kinetic Jin--Xin and Broadwell models. The techniques of this paper should have further application in the closely related case of traveling waves of systems with partial viscosity, for example in compressible gas dynamics or MHD.Comment: 120 pages. Changes since original submission. Corrected typos, esp. energy estimates of Section 7, corrected bad forward references, expanded Remark 1.17, end of introductio
    corecore