506 research outputs found

    ๋“œ๋ก ์„ ํ™œ์šฉํ•œ ์œ„์„ฑ ์ง€ํ‘œ๋ฐ˜์‚ฌ๋„ ์‚ฐ์ถœ๋ฌผ ๊ณต๊ฐ„ ํŒจํ„ด ๋ถ„์„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๋†์—…์ƒ๋ช…๊ณผํ•™๋Œ€ํ•™ ์ƒํƒœ์กฐ๊ฒฝยท์ง€์—ญ์‹œ์Šคํ…œ๊ณตํ•™๋ถ€(์ƒํƒœ์กฐ๊ฒฝํ•™), 2021.8. ์กฐ๋Œ€์†”.High-resolution satellites are assigned to monitor land surface in detail. The reliable surface reflectance (SR) is the fundamental in terrestrial ecosystem modeling so the temporal and spatial validation is essential. Usually based on multiple ground control points (GCPs), field spectroscopy guarantees the temporal continuity. Due to limited sampling, however, it hardly illustrates the spatial pattern. As a map, the pixelwise spatial variability of SR products is not well-documented. In this study, we introduced drone-based hyperspectral image (HSI) as a reference and compared the map with Sentinel 2 and Landsat 8 SR products on a heterogeneous rice paddy landscape. First, HSI was validated by field spectroscopy and swath overlapping, which assured qualitative radiometric accuracy within the viewing geometry. Second, HSI was matched to the satellite SRs. It involves spectral and spatial aggregation, co-registration and nadir bidirectional reflectance distribution function (BRDF)-adjusted reflectance (NBAR) conversion. Then, we 1) quantified the spatial variability of the satellite SRs and the vegetation indices (VIs) including NDVI and NIRv by APU matrix, 2) qualified them pixelwise by theoretical error budget and 3) examined the improvement by BRDF normalization. Sentinel 2 SR exhibits overall good agreement with drone HSI while the two NIRs are biased up to 10%. Despite the bias in NIR, the NDVI shows a good match on vegetated areas and the NIRv only displays the discrepancy on built-in areas. Landsat 8 SR was biased over the VIS bands (-9 ~ -7.6%). BRDF normalization just contributed to a minor improvement. Our results demonstrate the potential of drone HSI to replace in-situ observation and evaluate SR or atmospheric correction algorithms over the flat terrain. Future researches should replicate the results over the complex terrain and canopy structure (i.e. forest).์›๊ฒฉํƒ์‚ฌ์—์„œ ์ง€ํ‘œ ๋ฐ˜์‚ฌ๋„(SR)๋Š” ์ง€ํ‘œ์ •๋ณด๋ฅผ ๋น„ํŒŒ๊ดด์ ์ด๊ณ  ์ฆ‰๊ฐ์ ์ธ ๋ฐฉ๋ฒ•์œผ๋กœ ์ „๋‹ฌํ•ด์ฃผ๋Š” ๋งค๊ฐœ์ฒด ์—ญํ• ์„ ํ•œ๋‹ค. ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š” SR์€ ์œก์ƒ ์ƒํƒœ๊ณ„ ๋ชจ๋ธ๋ง์˜ ๊ธฐ๋ณธ์ด๊ณ , ์ด์— ๋”ฐ๋ผ SR์˜ ์‹œ๊ณต๊ฐ„์  ๊ฒ€์ฆ์ด ์š”๊ตฌ๋œ๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ SR์€ ์—ฌ๋Ÿฌ ์ง€์ƒ ๊ธฐ์ค€์ (GCP)์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋Š” ํ˜„์žฅ ๋ถ„๊ด‘๋ฒ•์„ ํ†ตํ•ด์„œ ์‹œ๊ฐ„์  ์—ฐ์†์„ฑ์ด ๋ณด์žฅ๋œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ํ˜„์žฅ ๋ถ„๊ด‘๋ฒ•์€ ์ œํ•œ์ ์ธ ์ƒ˜ํ”Œ๋ง์œผ๋กœ ๊ณต๊ฐ„ ํŒจํ„ด์„ ๊ฑฐ์˜ ๋ณด์—ฌ์ฃผ์ง€ ์•Š์•„, ์œ„์„ฑ SR์˜ ํ”ฝ์…€ ๋ณ„ ๊ณต๊ฐ„ ๋ณ€๋™์„ฑ์€ ์ž˜ ๋ถ„์„๋˜์ง€ ์•Š์•˜๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋“œ๋ก  ๊ธฐ๋ฐ˜์˜ ์ดˆ๋ถ„๊ด‘ ์˜์ƒ(HSI)์„ ์ฐธ๊ณ ์ž๋ฃŒ๋กœ ๋„์ž…ํ•˜์—ฌ, ์ด๋ฅผ ์ด์งˆ์ ์ธ ๋…ผ ๊ฒฝ๊ด€์—์„œ Sentinel 2 ๋ฐ Landsat 8 SR๊ณผ ๋น„๊ตํ•˜์˜€๋‹ค. ์šฐ์„ , ๋“œ๋ก  HSI๋Š” ํ˜„์žฅ ๋ถ„๊ด‘๋ฒ• ๋ฐ ๊ฒฝ๋กœ ์ค‘์ฒฉ์„ ํ†ตํ•ด์„œ ๊ด€์ธก๊ฐ๋„ ๋ฒ”์œ„ ๋‚ด์—์„œ ์ •์„ฑ์ ์ธ ๋ฐฉ์‚ฌ ์ธก์ •์„ ๋ณด์žฅํ•œ๋‹ค๊ณ  ๊ฒ€์ฆ๋˜์—ˆ๋‹ค. ์ดํ›„, ๋“œ๋ก  HSI๋Š” ์œ„์„ฑ SR์˜ ๋ถ„๊ด‘๋ฐ˜์‘ํŠน์„ฑ, ๊ณต๊ฐ„ํ•ด์ƒ๋„ ๋ฐ ์ขŒํ‘œ๊ณ„๋ฅผ ๊ธฐ์ค€์œผ๋กœ ๋งž์ถฐ์กŒ๊ณ , ๊ด€์ธก ๊ธฐํ•˜๋ฅผ ํ†ต์ผํ•˜๊ธฐ ์œ„ํ•ด์„œ ๋“œ๋ก  HIS์™€ ์œ„์„ฑ SR์€ ๊ฐ๊ฐ ์–‘๋ฐฉํ–ฅ๋ฐ˜์‚ฌ์œจ๋ถ„ํฌํ•จ์ˆ˜ (BRDF) ์ •๊ทœํ™” ๋ฐ˜์‚ฌ๋„ (NBAR)๋กœ ๋ณ€ํ™˜๋˜์—ˆ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, 1) APU ํ–‰๋ ฌ์œผ๋กœ ์œ„์„ฑ SR๊ณผ NDVI, NIRv๋ฅผ ํฌํ•จํ•˜๋Š” ์‹์ƒ์ง€์ˆ˜(VI)์˜ ๊ณต๊ฐ„๋ณ€๋™์„ฑ์„ ์ •๋Ÿ‰ํ™” ํ–ˆ๊ณ , 2) ๋Œ€๊ธฐ๋ณด์ •์˜ ์ด๋ก ์  ์˜ค์ฐจ๋ฅผ ๊ธฐ์ค€์œผ๋กœ SR๊ณผ VI๋ฅผ ํ”ฝ์…€๋ณ„๋กœ ํ‰๊ฐ€ํ–ˆ๊ณ , 3) BRDF ์ •๊ทœํ™”๋ฅผ ํ†ตํ•œ ๊ฐœ์„  ์‚ฌํ•ญ์„ ๊ฒ€ํ† ํ–ˆ๋‹ค. Sentinel 2 SR์€ ๋“œ๋ก  HSI์™€ ์ „๋ฐ˜์ ์œผ๋กœ ์ข‹์€ ์ผ์น˜๋ฅผ ๋ณด์ด๋‚˜, ๋‘ NIR ์ฑ„๋„์€ ์ตœ๋Œ€ 10% ํŽธํ–ฅ๋˜์—ˆ๋‹ค. NIR์˜ ํŽธํ–ฅ์€ ์‹์ƒ์ง€์ˆ˜์—์„œ ํ† ์ง€ ํ”ผ๋ณต์— ๋”ฐ๋ผ ๋‹ค๋ฅธ ์˜ํ–ฅ์„ ๋ฏธ์ณค๋‹ค. NDVI๋Š” ์‹์ƒ์—์„œ๋Š” ๋‚ฎ์€ ํŽธํ–ฅ์„ ๋ณด์—ฌ์คฌ๊ณ , NIRv๋Š” ๋„์‹œ์‹œ์„ค๋ฌผ ์˜์—ญ์—์„œ๋งŒ ๋†’์€ ํŽธํ–ฅ์„ ๋ณด์˜€๋‹ค. Landsat 8 SR์€ VIS ์ฑ„๋„์— ๋Œ€ํ•ด ํŽธํ–ฅ๋˜์—ˆ๋‹ค (-9 ~ -7.6%). BRDF ์ •๊ทœํ™”๋Š” ์œ„์„ฑ SR์˜ ํ’ˆ์งˆ์„ ๊ฐœ์„ ํ–ˆ์ง€๋งŒ, ๊ทธ ์˜ํ–ฅ์€ ๋ถ€์ˆ˜์ ์ด์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํ‰ํƒ„ํ•œ ์ง€ํ˜•์—์„œ ๋“œ๋ก  HSI๊ฐ€ ํ˜„์žฅ ๊ด€์ธก์„ ๋Œ€์ฒดํ•  ์ˆ˜ ์žˆ๊ณ , ๋”ฐ๋ผ์„œ ์œ„์„ฑ SR์ด๋‚˜ ๋Œ€๊ธฐ๋ณด์ • ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ‰๊ฐ€ํ•˜๋Š”๋ฐ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์˜€๋‹ค. ํ–ฅํ›„ ์—ฐ๊ตฌ์—์„œ๋Š” ์‚ฐ๋ฆผ์œผ๋กœ ๋Œ€์ƒ์ง€๋ฅผ ํ™•๋Œ€ํ•˜์—ฌ, ์ง€ํ˜•๊ณผ ์บ๋…ธํ”ผ ๊ตฌ์กฐ๊ฐ€ ๋“œ๋ก  HSI ๋ฐ ์œ„์„ฑ SR์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๋ถ„์„ํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค.Chapter 1. Introduction 1 1.1 Background 1 Chapter 2. Method 3 2.1 Study Site 3 2.2 Drone campaign 4 2.3 Data processing 4 2.3.1 Sensor calibration 5 2.3.2 Bidirectional reflectance factor (BRF) calculation 7 2.3.3 BRDF correction 7 2.3.4 Orthorectification 8 2.3.5 Spatial Aggregation 9 2.3.6 Co-registration 10 2.4 Satellite dataset 10 2.4.2 Landsat 8 12 Chapter 3. Result and Discussion 12 3.1 Drone BRF map quality assessment 12 3.1.1 Radiometric accuracy 12 3.1.2 BRDF effect 15 3.2 Spatial variability in satellite surface reflectance product 16 3.2.1 Sentinel 2B (10m) 17 3.2.2 Sentinel 2B (20m) 22 3.2.3 Landsat 8 26 Chapter 4. Conclusion 28 Supplemental Materials 30 Bibliography 34 Abstract in Korean 43์„

    Extended Pseudo Invariant Calibration Site-Based Trend-To-Trend Cross-Calibration of Optical Satellite Sensors

    Get PDF
    Satellite sensors have been extremely useful and are in massive demand in the understanding of the Earthโ€™s surface and monitoring of changes. For quantitative analysis and acquiring consistent measurements, absolute radiometric calibration is necessary. The most common vicarious approach of radiometric calibration is cross-calibration, which helps to tie all the sensors to a common radiometric scale for consistent measurement. One of the traditional methods of cross-calibration is performed using temporally and spectrally stable pseudo-invariant calibration sites (PICS). This technique is limited by adequate cloud-free acquisitions for cross-calibration which would require a longer time to study the differences in sensor measurements. To address the limitation of traditional PICS-based approaches and to increase the cross-calibration opportunity for quickly achieving highquality results, the approach is based on using extended pseudo invariant calibration sites (EPICS) over North Africa. With the EPICS-based approach, the area of extent of the cross-calibration site covers a large portion of the North African continent. With targets this large, any sensor should overpass some portion of PICS near-daily, allowing for evaluation of sensor-to-sensor performance with much greater frequency. By using these near-daily measurements, trends of the sensorโ€™s performance are then used to evaluate sensor-to-sensor daily cross-calibration. With the use of the proposed methodology, the dataset for cross-calibration is increased by an order of magnitude compared to traditional approaches, resulting in the differences between any two sensors being detected within a much shorter time. Using this new trend in trend cross-calibration approaches, gains were evaluated for Landsat 7/8 and Sentinel 2A/B, with the results showing that the sensors are calibrated within 2.5% (within less than 8% uncertainty) or better for all sensor pairs, which is consistent with what the traditional PICS-based approach detects. The proposed crosscalibration technique is useful to cross-calibrate any two sensors without the requirement of any coincident or near-coincident scene pairs, while still achieving results similar to traditional approaches in a short time

    Validation of Expanded Trend-To-Trend Cross-Calibration Technique and its Application to Global Scale

    Get PDF
    The expanded Trend-to-Trend (T2T) cross-calibration technique has the potential to calibrate two sensors in much less time and provides trends on daily assessment basis. The trend obtained from the expanded technique aids in evaluating the differences between satellite sensors. Therefore, this technique was validated with several trusted cross-calibration techniques to evaluate its accuracy. Initially, the expanded T2T technique was validated with three independent RadcaTS RRV, DIMITRI-PICS, and APICS models, and results show a 1% average difference with other models over all bands. Further, this technique was validated with other SDSU techniques to calibrate the newly launched satellite Landsat 9 with 8, demonstrating good agreement in all bands within 0.5%. This technique was also validated for Terra MODIS and ETM+, showing consistency within 1% for all bands compared to four PICS sites. Additionally, the T2T technique was applied to a global scale using EPICS Global sites. The expanded T2T cross-calibration gain result obtained for Landsat 8 versus Landsat 7/9, Sentinel 2A/2B, and Terra/Aqua MODIS presented that the difference between these pairs was within 0.5- 1% for most of the spectral bands. Total uncertainty obtained for these pairs of sensors using Monte Carlo Simulation varies from 2.5-4% for all bands except for SWIR2 bands, which vary up to 5%. The difference between EPICS Global and EPICS North Africa was calculated using the ratio of trend gain; the difference among them was within 0.5-1% difference on average for all the sensors and bands within a 0.5% uncertainty level difference

    Data-Driven Artificial Intelligence for Calibration of Hyperspectral Big Data

    Get PDF
    Near-earth hyperspectral big data present both huge opportunities and challenges for spurring developments in agriculture and high-throughput plant phenotyping and breeding. In this article, we present data-driven approaches to address the calibration challenges for utilizing near-earth hyperspectral data for agriculture. A data-driven, fully automated calibration workflow that includes a suite of robust algorithms for radiometric calibration, bidirectional reflectance distribution function (BRDF) correction and reflectance normalization, soil and shadow masking, and image quality assessments was developed. An empirical method that utilizes predetermined models between camera photon counts (digital numbers) and downwelling irradiance measurements for each spectral band was established to perform radiometric calibration. A kernel-driven semiempirical BRDF correction method based on the Ross Thick-Li Sparse (RTLS) model was used to normalize the data for both changes in solar elevation and sensor view angle differences attributed to pixel location within the field of view. Following rigorous radiometric and BRDF corrections, novel rule-based methods were developed to conduct automatic soil removal; and a newly proposed approach was used for image quality assessment; additionally, shadow masking and plot-level feature extraction were carried out. Our results show that the automated calibration, processing, storage, and analysis pipeline developed in this work can effectively handle massive amounts of hyperspectral data and address the urgent challenges related to the production of sustainable bioenergy and food crops, targeting methods to accelerate plant breeding for improving yield and biomass traits

    Hyperspectral Empirical Absolute Calibration Model Using Libya 4 Pseudo-Invariant Calibration Site

    Get PDF
    The objective of this paper is to find an empirical hyperspectral absolute calibration model using Libya 4 pseudo-invariant calibration site (PICS). The approach involves using the Landsat 8 (L8) Operational Land Imager (OLI) as the reference radiometer and using Earth Observing One (EO-1) Hyperion, with a spectral resolution of 10 nm as a hyperspectral source. This model utilizes data from a region of interest (ROI) in an โ€œoptimal regionโ€ of 3% temporal, spatial, and spectral stability within the Libya 4 PICS. It uses an improved, simple, empirical, hyperspectral Bidirectional Reflectance Distribution function (BRDF) model accounting for four angles: solar zenith and azimuth, and view zenith and azimuth angles. This model can perform absolute calibration in 1 nm spectral resolution by predicting TOA reflectance in all existing spectral bands of the sensors. The resultant model was validated with image data acquired from satellite sensors such as Landsat 7, Sentinel 2A, and Sentinel 2B, Terra MODIS, Aqua MODIS, from their launch date to 2020. These satellite sensors differ in terms of the width of their spectral band-pass, overpass time, off-nadir viewing capabilities, spatial resolution, and temporal revisit time, etc. The result demonstrates the efficacy of the proposed model has an accuracy of the order of 3% with a precision of about 3% for the nadir viewing sensors (with view zenith angle up to 5ยฐ) used in the study. For the off-nadir viewing satellites with view zenith angle up to 20ยฐ, it can have an estimated accuracy of 6% and precision of 4%

    Empirical Absolute Calibration Model for Multiple Pseudo-Invariant Calibration Sites

    Get PDF
    This work extends an empirical absolute calibration model initially developed for the Libya 4 Pseudo-Invariant Calibration Site (PICS) to five additional Saharan Desert PICS (Egypt 1, Libya 1, Niger 1, Niger 2, and Sudan 1), and demonstrates the efficacy of the resulting models at predicting sensor top-of-atmosphere (TOA) reflectance. It attempts to generate absolute calibration models for these PICS that have an accuracy and precision comparable to or better than the current Libya 4 model, with the intent of providing additional opportunities for sensor calibration. In addition, this work attempts to validate the general applicability of the model to other sites. The method uses Terra Moderate Resolution Imaging Spectroradiometer (MODIS) as the reference radiometer and Earth Observing-1 (EO-1) Hyperion image data to provide a representative hyperspectral reflectance profile of the PICS. Data from a region of interest (ROI) in an โ€œoptimal regionโ€ of 3% temporal, spatial, and spectral stability within the PICS are used for developing the model. The developed models were used to simulate observations of the Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+), Landsat 8 (L8) Operational Land Imager (OLI), Sentinel 2A (S2A) Multispectral Instrument (MSI) and Sentinel 2B (S2B) Multispectral Instrument (MSI) from their respective launch date through 2018

    Multitemporal Cross-Calibration of the Terra MODIS and Landsat 7 ETM+ Reflective Solar Bands

    Get PDF
    In recent years, there has been a significant increase in the use of remotely sensed data to address global issues. With the open data policy, the data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Enhanced Thematic Mapper Plus (ETM+) sensors have become a critical component of numerous applications. These two sensors have been operational for more than a decade, providing a rich archive of multispectral imagery for analysis of mutitemporal remote sensing data. This paper focuses on evaluating the radiometric calibration agreement between MODIS and ETM+ using the near-simultaneous and cloud-free image pairs over an African pseudo-invariant calibration site, Libya 4. To account for the combined uncertainties in the top-of-atmosphere (TOA) reflectance due to surface and atmospheric bidirectional reflectance distribution function (BRDF), a semiempirical BRDF model was adopted to normalize the TOA reflectance to the same illumination and viewing geometry. In addition, the spectra from the Earth Observing-1 (EO-1) Hyperion were used to compute spectral corrections between the corresponding MODIS and ETM+ spectral bands. As EO-1 Hyperion scenes were not available for all MODIS and ETM+ data pairs, MODerate resolution atmospheric TRANsmission (MODTRAN) 5.0 simulations were also used to adjust for differences due to the presence or lack of absorption features in some of the bands. A MODIS split-window algorithm provides the atmospheric water vapor column abundance during the overpasses for the MODTRAN simulations. Additionally, the column atmospheric water vapor content during the overpass was retrieved using the MODIS precipitable water vapor product. After performing these adjustments, the radiometric cross-calibration of the two sensors was consistent to within 7%. Some drifts in the response of the bands are evident, with MODIS band 3 being the largest of about 6% over 10 years, a change that will be corrected in Collection 6 MODIS processing

    Classification of North Africa for Use as an Extended Pseudo Invariant Calibration Sites (Epics) for Radiometric Calibration and Stability Monitoring of Optical Satellite Sensors

    Get PDF
    An increasing number of Earth-observing satellite sensors are being launched to meet the insatiable demand for timely and accurate data to help the understanding of the Earthโ€™s complex systems and to monitor significant changes to them. The quality of data recorded by these sensors is a primary concern, as it critically depends on accurate radiometric calibration for each sensor. Pseudo Invariant Calibration Sites (PICS) have been extensively used for radiometric calibration and temporal stability monitoring of optical satellite sensors. Due to limited knowledge about the radiometric stability of North Africa, only a limited number of sites in the region are used for this purpose. This work presents an automated approach to classify North Africa for its potential use as an extended PICS (EPICS) covering vast portions of the continent. An unsupervised classification algorithm identified 19 โ€œclustersโ€ representing distinct land surface types; three clusters were identified with spatial uncertainties within approximately 5% in the shorter wavelength bands and 3% in the longer wavelength bands. A key advantage of the cluster approach is that large numbers of pixels are aggregated into contiguous homogeneous regions sufficiently distributed across the continent to allow multiple imaging opportunities per day, as opposed to imaging a typical PICS once during the sensorโ€™s revisit period. In addition, this work proposes a technique to generate a representative hyperspectral profile for these clusters, as the hyperspectral profile of these identified clusters are mandatory in order to utilize them for performing cross-calibration of optical satellite sensors. The technique was used to generate the profile for the cluster containing the largest number of aggregated pixels. The resulting profile was found to have temporal uncertainties within 5% across all the spectral regions. Overall, this technique shows great potential for generation of representative hyperspectral profiles for any North African cluster, which could allow the use of the entire North Africa Saharan region as an extended PICS (EPICS) dataset for sensor cross-calibration. Furthermore, this work investigates the performance of extended pseudo-invariant calibration sites (EPICS) in cross-calibration for one of Shresthaโ€™s clusters, Cluster 13, by comparing its results to those obtained from a traditional PICS-based cross-calibration. The use of EPICS clusters can significantly increase the number of cross-calibration opportunities within a much shorter time period. The cross-calibration gain ratio estimated using a cluster-based approach had a similar accuracy to the cross-calibration gain derived from region of interest (ROI)-based approaches. The cluster-based cross-calibration gain ratio is consistent within approximately 2% of the ROI-based cross-calibration gain ratio for all bands except for the coastal and shortwave-infrared (SWIR) 2 bands. These results show that image data from any region within Cluster 13 can be used for sensor crosscalibration. Eventually, North Africa can be used a continental scale PICS

    A STUDY ON THE EFFECTS OF VIEWING ANGLE VARIATION IN SUGARCANE RADIOMETRIC MEASURES

    Get PDF
    Remote Sensing techniques, such as field spectroscopy provide information with a large level of detail about spectral characteristics of plants enabling the monitoring of crops. The aim of this study is to analyze the influence of viewing angle in estimating the Bidirectional Reflectance Distribution Function (BRDF) for the case of sugarcane. The study on the variation of the spectral reflectance profile can help the improvement of algorithms for correction of BRDF in remote sensing images. Therefore, spectral measurements acquired on nadir and different off-nadir view angle directions were considered in the experiments. Change both anisotropy factor and anisotropy index was determined in order to evaluate the BRDF variability in the spectral data of sugarcane. BRDF correction was applied using the Walthall model, thus reducing the BRDF effects. From the results obtained in the experiments, the spectral signatures showed a similar spectral pattern varying mainly in intensity. The anisotropy factor which showed a similar pattern in all wavelengths. The visual analysis of the spectral reflectance profile of sugarcane showed variation mainly in intensity at different angles. The use of Walthall model reduced the BRDF effects and brought the spectral reflectance profiles acquired on different viewing geometry close to nadir viewing. Therefore, BRDF effects on remote sensing data of vegetation cover can be minimized by applying this model. This conclusion contributes to developing suitable algorithms to produce radiometrically calibrated mosaics with remote sensing images taken by aerial platforms
    • โ€ฆ
    corecore