662 research outputs found

    Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy

    Full text link
    We consider quantum computations comprising only commuting gates, known as IQP computations, and provide compelling evidence that the task of sampling their output probability distributions is unlikely to be achievable by any efficient classical means. More specifically we introduce the class post-IQP of languages decided with bounded error by uniform families of IQP circuits with post-selection, and prove first that post-IQP equals the classical class PP. Using this result we show that if the output distributions of uniform IQP circuit families could be classically efficiently sampled, even up to 41% multiplicative error in the probabilities, then the infinite tower of classical complexity classes known as the polynomial hierarchy, would collapse to its third level. We mention some further results on the classical simulation properties of IQP circuit families, in particular showing that if the output distribution results from measurements on only O(log n) lines then it may in fact be classically efficiently sampled.Comment: 13 page

    The Computational Complexity of Linear Optics

    Full text link
    We give new evidence that quantum computers -- moreover, rudimentary quantum computers built entirely out of linear-optical elements -- cannot be efficiently simulated by classical computers. In particular, we define a model of computation in which identical photons are generated, sent through a linear-optical network, then nonadaptively measured to count the number of photons in each mode. This model is not known or believed to be universal for quantum computation, and indeed, we discuss the prospects for realizing the model using current technology. On the other hand, we prove that the model is able to solve sampling problems and search problems that are classically intractable under plausible assumptions. Our first result says that, if there exists a polynomial-time classical algorithm that samples from the same probability distribution as a linear-optical network, then P^#P=BPP^NP, and hence the polynomial hierarchy collapses to the third level. Unfortunately, this result assumes an extremely accurate simulation. Our main result suggests that even an approximate or noisy classical simulation would already imply a collapse of the polynomial hierarchy. For this, we need two unproven conjectures: the "Permanent-of-Gaussians Conjecture", which says that it is #P-hard to approximate the permanent of a matrix A of independent N(0,1) Gaussian entries, with high probability over A; and the "Permanent Anti-Concentration Conjecture", which says that |Per(A)|>=sqrt(n!)/poly(n) with high probability over A. We present evidence for these conjectures, both of which seem interesting even apart from our application. This paper does not assume knowledge of quantum optics. Indeed, part of its goal is to develop the beautiful theory of noninteracting bosons underlying our model, and its connection to the permanent function, in a self-contained way accessible to theoretical computer scientists.Comment: 94 pages, 4 figure

    On the Power of Many One-Bit Provers

    Full text link
    We study the class of languages, denoted by \MIP[k, 1-\epsilon, s], which have kk-prover games where each prover just sends a \emph{single} bit, with completeness 1−ϵ1-\epsilon and soundness error ss. For the case that k=1k=1 (i.e., for the case of interactive proofs), Goldreich, Vadhan and Wigderson ({\em Computational Complexity'02}) demonstrate that \SZK exactly characterizes languages having 1-bit proof systems with"non-trivial" soundness (i.e., 1/2<s≤1−2ϵ1/2 < s \leq 1-2\epsilon). We demonstrate that for the case that k≥2k\geq 2, 1-bit kk-prover games exhibit a significantly richer structure: + (Folklore) When s≤12k−ϵs \leq \frac{1}{2^k} - \epsilon, \MIP[k, 1-\epsilon, s] = \BPP; + When 12k+ϵ≤s<22k−ϵ\frac{1}{2^k} + \epsilon \leq s < \frac{2}{2^k}-\epsilon, \MIP[k, 1-\epsilon, s] = \SZK; + When s≥22k+ϵs \ge \frac{2}{2^k} + \epsilon, \AM \subseteq \MIP[k, 1-\epsilon, s]; + For s≤0.62k/2ks \le 0.62 k/2^k and sufficiently large kk, \MIP[k, 1-\epsilon, s] \subseteq \EXP; + For s≥2k/2ks \ge 2k/2^{k}, \MIP[k, 1, 1-\epsilon, s] = \NEXP. As such, 1-bit kk-prover games yield a natural "quantitative" approach to relating complexity classes such as \BPP,\SZK,\AM, \EXP, and \NEXP. We leave open the question of whether a more fine-grained hierarchy (between \AM and \NEXP) can be established for the case when s≥22k+ϵs \geq \frac{2}{2^k} + \epsilon
    • …
    corecore