241 research outputs found

    Role of Machine Learning, Deep Learning and WSN in Disaster Management: A Review and Proposed Architecture

    Get PDF
    Disasters are occurrences that have the potential to adversely affect a community via casualties, ecological damage, or monetary losses. Due to its distinctive geoclimatic characteristics, India has always been susceptible to natural calamities. Disaster Management is the management of disaster prevention, readiness, response, and recovery tasks in a systematic manner. This paper reviews various types of disasters and their management approaches implemented by researchers using Wireless Sensor Networks (WSNs) and machine learning techniques. It also compares and contrasts various prediction algorithms and uses the optimal algorithm on multiple flood prediction datasets. After understanding the drawbacks of existing datasets, authors have developed a new dataset for Mumbai, Maharashtra consisting of various attributes for flood prediction. The performance of the optimal algorithm on the dataset is seen by the training, validation and testing accuracy of 100%, 98.57% and 77.59% respectively

    NeuDetect: A neural network data mining system for wireless network intrusion detection

    Get PDF
    This thesis proposes an Intrusion Detection System, NeuDetect, which applies Neural Network technique to wireless network packets captured through hardware sensors for purposes of real time detection of anomalous packets. To address the problem of high false alarm rate confronted by the current wireless intrusion detection systems, this thesis presents a method of applying the artificial neural networks technique to the wireless network intrusion detection system. The proposed system solution approach is to find normal and anomalous patterns on preprocessed wireless packet records by comparing them with training data using Back-propagation algorithm. An anomaly score is assigned to each packet by calculating the difference between the output error and threshold. If the anomaly score is positive then the wireless packet is flagged as anomalous and is negative then the packet is flagged as normal. If the anomaly score is zero or close to zero it will be flagged as an unknown attack and will be sent back to training process for re-evaluation

    Energy-efficient information inference in wireless sensor networks based on graphical modeling

    Get PDF
    This dissertation proposes a systematic approach, based on a probabilistic graphical model, to infer missing observations in wireless sensor networks (WSNs) for sustaining environmental monitoring. This enables us to effectively address two critical challenges in WSNs: (1) energy-efficient data gathering through planned communication disruptions resulting from energy-saving sleep cycles, and (2) sensor-node failure tolerance in harsh environments. In our approach, we develop a pairwise Markov Random Field (MRF) to model the spatial correlations in a sensor network. Our MRF model is first constructed through automatic learning from historical sensed data, by using Iterative Proportional Fitting (IPF). When the MRF model is constructed, Loopy Belief Propagation (LBP) is then employed to perform information inference to estimate the missing data given incomplete network observations. The proposed approach is then improved in terms of energy-efficiency and robustness from three aspects: model building, inference and parameter learning. The model and methods are empirically evaluated using multiple real-world sensor network data sets. The results demonstrate the merits of our proposed approaches

    A dependability framework for WSN-based aquatic monitoring systems

    Get PDF
    Wireless Sensor Networks (WSN) are being progressively used in several application areas, particularly to collect data and monitor physical processes. Moreover, sensor nodes used in environmental monitoring applications, such as the aquatic sensor networks, are often subject to harsh environmental conditions while monitoring complex phenomena. Non-functional requirements, like reliability, security or availability, are increasingly important and must be accounted for in the application development. For that purpose, there is a large body of knowledge on dependability techniques for distributed systems, which provides a good basis to understand how to satisfy these non-functional requirements of WSN-based monitoring applications. Given the data-centric nature of monitoring applications, it is of particular importance to ensure that data is reliable or, more generically, that it has the necessary quality. The problem of ensuring the desired quality of data for dependable monitoring using WSNs is studied herein. With a dependability-oriented perspective, it is reviewed the possible impairments to dependability and the prominent existing solutions to solve or mitigate these impairments. Despite the variety of components that may form a WSN-based monitoring system, it is given particular attention to understanding which faults can affect sensors, how they can affect the quality of the information, and how this quality can be improved and quantified. Open research issues for the specific case of aquatic monitoring applications are also discussed. One of the challenges in achieving a dependable system behavior is to overcome the external disturbances affecting sensor measurements and detect the failure patterns in sensor data. This is a particular problem in environmental monitoring, due to the difficulty in distinguishing a faulty behavior from the representation of a natural phenomenon. Existing solutions for failure detection assume that physical processes can be accurately modeled, or that there are large deviations that may be detected using coarse techniques, or more commonly that it is a high-density sensor network with value redundant sensors. This thesis aims at defining a new methodology for dependable data quality in environmental monitoring systems, aiming to detect faulty measurements and increase the sensors data quality. The framework of the methodology is overviewed through a generically applicable design, which can be employed to any environment sensor network dataset. The methodology is evaluated in various datasets of different WSNs, where it is used machine learning to model each sensor behavior, exploiting the existence of correlated data provided by neighbor sensors. It is intended to explore the data fusion strategies in order to effectively detect potential failures for each sensor and, simultaneously, distinguish truly abnormal measurements from deviations due to natural phenomena. This is accomplished with the successful application of the methodology to detect and correct outliers, offset and drifting failures in real monitoring networks datasets. In the future, the methodology can be applied to optimize the data quality control processes of new and already operating monitoring networks, and assist in the networks maintenance operations.As redes de sensores sem fios (RSSF) têm vindo cada vez mais a serem utilizadas em diversas áreas de aplicação, em especial para monitorizar e capturar informação de processos físicos em meios naturais. Neste contexto, os sensores que estão em contacto direto com o respectivo meio ambiente, como por exemplo os sensores em meios aquáticos, estão sujeitos a condições adversas e complexas durante o seu funcionamento. Esta complexidade conduz à necessidade de considerarmos, durante o desenvolvimento destas redes, os requisitos não funcionais da confiabilidade, da segurança ou da disponibilidade elevada. Para percebermos como satisfazer estes requisitos da monitorização com base em RSSF para aplicações ambientais, já existe uma boa base de conhecimento sobre técnicas de confiabilidade em sistemas distribuídos. Devido ao foco na obtenção de dados deste tipo de aplicações de RSSF, é particularmente importante garantir que os dados obtidos na monitorização sejam confiáveis ou, de uma forma mais geral, que tenham a qualidade necessária para o objetivo pretendido. Esta tese estuda o problema de garantir a qualidade de dados necessária para uma monitorização confiável usando RSSF. Com o foco na confiabilidade, revemos os possíveis impedimentos à obtenção de dados confiáveis e as soluções existentes capazes de corrigir ou mitigar esses impedimentos. Apesar de existir uma grande variedade de componentes que formam ou podem formar um sistema de monitorização com base em RSSF, prestamos particular atenção à compreensão das possíveis faltas que podem afetar os sensores, a como estas faltas afetam a qualidade dos dados recolhidos pelos sensores e a como podemos melhorar os dados e quantificar a sua qualidade. Tendo em conta o caso específico dos sistemas de monitorização em meios aquáticos, discutimos ainda as várias linhas de investigação em aberto neste tópico. Um dos desafios para se atingir um sistema de monitorização confiável é a deteção da influência de fatores externos relacionados com o ambiente monitorizado, que afetam as medições obtidas pelos sensores, bem como a deteção de comportamentos de falha nas medições. Este desafio é um problema particular na monitorização em ambientes naturais adversos devido à dificuldade da distinção entre os comportamentos associados às falhas nos sensores e os comportamentos dos sensores afetados pela à influência de um evento natural. As soluções existentes para este problema, relacionadas com deteção de faltas, assumem que os processos físicos a monitorizar podem ser modelados de forma eficaz, ou que os comportamentos de falha são caraterizados por desvios elevados do comportamento expectável de forma a serem facilmente detetáveis. Mais frequentemente, as soluções assumem que as redes de sensores contêm um número suficientemente elevado de sensores na área monitorizada e, consequentemente, que existem sensores redundantes relativamente à medição. Esta tese tem como objetivo a definição de uma nova metodologia para a obtenção de qualidade de dados confiável em sistemas de monitorização ambientais, com o intuito de detetar a presença de faltas nas medições e aumentar a qualidade dos dados dos sensores. Esta metodologia tem uma estrutura genérica de forma a ser aplicada a uma qualquer rede de sensores ambiental ou ao respectivo conjunto de dados obtido pelos sensores desta. A metodologia é avaliada através de vários conjuntos de dados de diferentes RSSF, em que aplicámos técnicas de aprendizagem automática para modelar o comportamento de cada sensor, com base na exploração das correlações existentes entre os dados obtidos pelos sensores da rede. O objetivo é a aplicação de estratégias de fusão de dados para a deteção de potenciais falhas em cada sensor e, simultaneamente, a distinção de medições verdadeiramente defeituosas de desvios derivados de eventos naturais. Este objectivo é cumprido através da aplicação bem sucedida da metodologia para detetar e corrigir outliers, offsets e drifts em conjuntos de dados reais obtidos por redes de sensores. No futuro, a metodologia pode ser aplicada para otimizar os processos de controlo da qualidade de dados quer de novos sistemas de monitorização, quer de redes de sensores já em funcionamento, bem como para auxiliar operações de manutenção das redes.Laboratório Nacional de Engenharia Civi

    Intelligent Sensor Networks

    Get PDF
    In the last decade, wireless or wired sensor networks have attracted much attention. However, most designs target general sensor network issues including protocol stack (routing, MAC, etc.) and security issues. This book focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on their world-class research, the authors present the fundamentals of intelligent sensor networks. They cover sensing and sampling, distributed signal processing, and intelligent signal learning. In addition, they present cutting-edge research results from leading experts

    Structural health monitoring of offshore wind turbines: A review through the Statistical Pattern Recognition Paradigm

    Get PDF
    Offshore Wind has become the most profitable renewable energy source due to the remarkable development it has experienced in Europe over the last decade. In this paper, a review of Structural Health Monitoring Systems (SHMS) for offshore wind turbines (OWT) has been carried out considering the topic as a Statistical Pattern Recognition problem. Therefore, each one of the stages of this paradigm has been reviewed focusing on OWT application. These stages are: Operational Evaluation; Data Acquisition, Normalization and Cleansing; Feature Extraction and Information Condensation; and Statistical Model Development. It is expected that optimizing each stage, SHMS can contribute to the development of efficient Condition-Based Maintenance Strategies. Optimizing this strategy will help reduce labor costs of OWTs׳ inspection, avoid unnecessary maintenance, identify design weaknesses before failure, improve the availability of power production while preventing wind turbines׳ overloading, therefore, maximizing the investments׳ return. In the forthcoming years, a growing interest in SHM technologies for OWT is expected, enhancing the potential of offshore wind farm deployments further offshore. Increasing efficiency in operational management will contribute towards achieving UK׳s 2020 and 2050 targets, through ultimately reducing the Levelised Cost of Energy (LCOE)

    IoT and Sensor Networks in Industry and Society

    Get PDF
    The exponential progress of Information and Communication Technology (ICT) is one of the main elements that fueled the acceleration of the globalization pace. Internet of Things (IoT), Artificial Intelligence (AI) and big data analytics are some of the key players of the digital transformation that is affecting every aspect of human's daily life, from environmental monitoring to healthcare systems, from production processes to social interactions. In less than 20 years, people's everyday life has been revolutionized, and concepts such as Smart Home, Smart Grid and Smart City have become familiar also to non-technical users. The integration of embedded systems, ubiquitous Internet access, and Machine-to-Machine (M2M) communications have paved the way for paradigms such as IoT and Cyber Physical Systems (CPS) to be also introduced in high-requirement environments such as those related to industrial processes, under the forms of Industrial Internet of Things (IIoT or I2oT) and Cyber-Physical Production Systems (CPPS). As a consequence, in 2011 the German High-Tech Strategy 2020 Action Plan for Germany first envisioned the concept of Industry 4.0, which is rapidly reshaping traditional industrial processes. The term refers to the promise to be the fourth industrial revolution. Indeed, the first industrial revolution was triggered by water and steam power. Electricity and assembly lines enabled mass production in the second industrial revolution. In the third industrial revolution, the introduction of control automation and Programmable Logic Controllers (PLCs) gave a boost to factory production. As opposed to the previous revolutions, Industry 4.0 takes advantage of Internet access, M2M communications, and deep learning not only to improve production efficiency but also to enable the so-called mass customization, i.e. the mass production of personalized products by means of modularized product design and flexible processes. Less than five years later, in January 2016, the Japanese 5th Science and Technology Basic Plan took a further step by introducing the concept of Super Smart Society or Society 5.0. According to this vision, in the upcoming future, scientific and technological innovation will guide our society into the next social revolution after the hunter-gatherer, agrarian, industrial, and information eras, which respectively represented the previous social revolutions. Society 5.0 is a human-centered society that fosters the simultaneous achievement of economic, environmental and social objectives, to ensure a high quality of life to all citizens. This information-enabled revolution aims to tackle today’s major challenges such as an ageing population, social inequalities, depopulation and constraints related to energy and the environment. Accordingly, the citizens will be experiencing impressive transformations into every aspect of their daily lives. This book offers an insight into the key technologies that are going to shape the future of industry and society. It is subdivided into five parts: the I Part presents a horizontal view of the main enabling technologies, whereas the II-V Parts offer a vertical perspective on four different environments. The I Part, dedicated to IoT and Sensor Network architectures, encompasses three Chapters. In Chapter 1, Peruzzi and Pozzebon analyse the literature on the subject of energy harvesting solutions for IoT monitoring systems and architectures based on Low-Power Wireless Area Networks (LPWAN). The Chapter does not limit the discussion to Long Range Wise Area Network (LoRaWAN), SigFox and Narrowband-IoT (NB-IoT) communication protocols, but it also includes other relevant solutions such as DASH7 and Long Term Evolution MAchine Type Communication (LTE-M). In Chapter 2, Hussein et al. discuss the development of an Internet of Things message protocol that supports multi-topic messaging. The Chapter further presents the implementation of a platform, which integrates the proposed communication protocol, based on Real Time Operating System. In Chapter 3, Li et al. investigate the heterogeneous task scheduling problem for data-intensive scenarios, to reduce the global task execution time, and consequently reducing data centers' energy consumption. The proposed approach aims to maximize the efficiency by comparing the cost between remote task execution and data migration. The II Part is dedicated to Industry 4.0, and includes two Chapters. In Chapter 4, Grecuccio et al. propose a solution to integrate IoT devices by leveraging a blockchain-enabled gateway based on Ethereum, so that they do not need to rely on centralized intermediaries and third-party services. As it is better explained in the paper, where the performance is evaluated in a food-chain traceability application, this solution is particularly beneficial in Industry 4.0 domains. Chapter 5, by De Fazio et al., addresses the issue of safety in workplaces by presenting a smart garment that integrates several low-power sensors to monitor environmental and biophysical parameters. This enables the detection of dangerous situations, so as to prevent or at least reduce the consequences of workers accidents. The III Part is made of two Chapters based on the topic of Smart Buildings. In Chapter 6, Petroșanu et al. review the literature about recent developments in the smart building sector, related to the use of supervised and unsupervised machine learning models of sensory data. The Chapter poses particular attention on enhanced sensing, energy efficiency, and optimal building management. In Chapter 7, Oh examines how much the education of prosumers about their energy consumption habits affects power consumption reduction and encourages energy conservation, sustainable living, and behavioral change, in residential environments. In this Chapter, energy consumption monitoring is made possible thanks to the use of smart plugs. Smart Transport is the subject of the IV Part, including three Chapters. In Chapter 8, Roveri et al. propose an approach that leverages the small world theory to control swarms of vehicles connected through Vehicle-to-Vehicle (V2V) communication protocols. Indeed, considering a queue dominated by short-range car-following dynamics, the Chapter demonstrates that safety and security are increased by the introduction of a few selected random long-range communications. In Chapter 9, Nitti et al. present a real time system to observe and analyze public transport passengers' mobility by tracking them throughout their journey on public transport vehicles. The system is based on the detection of the active Wi-Fi interfaces, through the analysis of Wi-Fi probe requests. In Chapter 10, Miler et al. discuss the development of a tool for the analysis and comparison of efficiency indicated by the integrated IT systems in the operational activities undertaken by Road Transport Enterprises (RTEs). The authors of this Chapter further provide a holistic evaluation of efficiency of telematics systems in RTE operational management. The book ends with the two Chapters of the V Part on Smart Environmental Monitoring. In Chapter 11, He et al. propose a Sea Surface Temperature Prediction (SSTP) model based on time-series similarity measure, multiple pattern learning and parameter optimization. In this strategy, the optimal parameters are determined by means of an improved Particle Swarm Optimization method. In Chapter 12, Tsipis et al. present a low-cost, WSN-based IoT system that seamlessly embeds a three-layered cloud/fog computing architecture, suitable for facilitating smart agricultural applications, especially those related to wildfire monitoring. We wish to thank all the authors that contributed to this book for their efforts. We express our gratitude to all reviewers for the volunteering support and precious feedback during the review process. We hope that this book provides valuable information and spurs meaningful discussion among researchers, engineers, businesspeople, and other experts about the role of new technologies into industry and society

    Exploring the Landscape of Ubiquitous In-home Health Monitoring: A Comprehensive Survey

    Full text link
    Ubiquitous in-home health monitoring systems have become popular in recent years due to the rise of digital health technologies and the growing demand for remote health monitoring. These systems enable individuals to increase their independence by allowing them to monitor their health from the home and by allowing more control over their well-being. In this study, we perform a comprehensive survey on this topic by reviewing a large number of literature in the area. We investigate these systems from various aspects, namely sensing technologies, communication technologies, intelligent and computing systems, and application areas. Specifically, we provide an overview of in-home health monitoring systems and identify their main components. We then present each component and discuss its role within in-home health monitoring systems. In addition, we provide an overview of the practical use of ubiquitous technologies in the home for health monitoring. Finally, we identify the main challenges and limitations based on the existing literature and provide eight recommendations for potential future research directions toward the development of in-home health monitoring systems. We conclude that despite extensive research on various components needed for the development of effective in-home health monitoring systems, the development of effective in-home health monitoring systems still requires further investigation.Comment: 35 pages, 5 figure

    Efficient information distribution in the Internet of Medical Things (IoMT)

    Get PDF
    Towards the world of Internet of Things, people utilize knowledge from sensor streams in various kinds of smart applications including, but not limited to smart medical information systems. The number of sensed devices is rapidly increasing along with the amount of sensing data. Consequently, the bottleneck problem at the local gateway has become a huge concern given the critical loss and delay intolerant nature of medical data. Orthogonally to the existing solutions, we propose sensor data prioritization mechanism to enhance the information quality while utilizing resources using Value of Information (VoI) at the application level. Our approach adopts signal processing techniques and information theory related concepts to assess the VoI. We introduce basic yet convenient ways to enhance the efficiency of medical information systems, not only when considering the resource consumption, but also when performing updates, by selecting appropriate delay for wearable sensors to send data at optimal VoI. Our analysis shows some interesting results about the correlation and dependency of different sensor signals, that we use for the value assesment. This preliminary analysis could be an initiative for further investigation of VoI in medical data transmission using more advanced methods.Towards the world of Internet of Things, people utilize knowledge from sensor streams in various kinds of smart applications including, but not limited to smart medical information systems. The number of sensed devices is rapidly increasing along with the amount of sensing data. Consequently, the bottleneck problem at the local gateway has become a huge concern given the critical loss and delay intolerant nature of medical data. Orthogonally to the existing solutions, we propose sensor data prioritization mechanism to enhance the information quality while utilizing resources using Value of Information (VoI) at the application level. Our approach adopts signal processing techniques and information theory related concepts to assess the VoI. We introduce basic yet convenient ways to enhance the efficiency of medical information systems, not only when considering the resource consumption, but also when performing updates, by selecting appropriate delay for wearable sensors to send data at optimal VoI. Our analysis shows some interesting results about the correlation and dependency of different sensor signals, that we use for the value assesment. This preliminary analysis could be an initiative for further investigation of VoI in medical data transmission using more advanced methods

    From data acquisition to data fusion : a comprehensive review and a roadmap for the identification of activities of daily living using mobile devices

    Get PDF
    This paper focuses on the research on the state of the art for sensor fusion techniques, applied to the sensors embedded in mobile devices, as a means to help identify the mobile device user’s daily activities. Sensor data fusion techniques are used to consolidate the data collected from several sensors, increasing the reliability of the algorithms for the identification of the different activities. However, mobile devices have several constraints, e.g., low memory, low battery life and low processing power, and some data fusion techniques are not suited to this scenario. The main purpose of this paper is to present an overview of the state of the art to identify examples of sensor data fusion techniques that can be applied to the sensors available in mobile devices aiming to identify activities of daily living (ADLs)
    corecore