35 research outputs found

    Enhancing Fine-Tuning Based Backdoor Defense with Sharpness-Aware Minimization

    Full text link
    Backdoor defense, which aims to detect or mitigate the effect of malicious triggers introduced by attackers, is becoming increasingly critical for machine learning security and integrity. Fine-tuning based on benign data is a natural defense to erase the backdoor effect in a backdoored model. However, recent studies show that, given limited benign data, vanilla fine-tuning has poor defense performance. In this work, we provide a deep study of fine-tuning the backdoored model from the neuron perspective and find that backdoorrelated neurons fail to escape the local minimum in the fine-tuning process. Inspired by observing that the backdoorrelated neurons often have larger norms, we propose FTSAM, a novel backdoor defense paradigm that aims to shrink the norms of backdoor-related neurons by incorporating sharpness-aware minimization with fine-tuning. We demonstrate the effectiveness of our method on several benchmark datasets and network architectures, where it achieves state-of-the-art defense performance. Overall, our work provides a promising avenue for improving the robustness of machine learning models against backdoor attacks

    Weight Compander: A Simple Weight Reparameterization for Regularization

    Full text link
    Regularization is a set of techniques that are used to improve the generalization ability of deep neural networks. In this paper, we introduce weight compander (WC), a novel effective method to improve generalization by reparameterizing each weight in deep neural networks using a nonlinear function. It is a general, intuitive, cheap and easy to implement method, which can be combined with various other regularization techniques. Large weights in deep neural networks are a sign of a more complex network that is overfitted to the training data. Moreover, regularized networks tend to have a greater range of weights around zero with fewer weights centered at zero. We introduce a weight reparameterization function which is applied to each weight and implicitly reduces overfitting by restricting the magnitude of the weights while forcing them away from zero at the same time. This leads to a more democratic decision-making in the network. Firstly, individual weights cannot have too much influence in the prediction process due to the restriction of their magnitude. Secondly, more weights are used in the prediction process, since they are forced away from zero during the training. This promotes the extraction of more features from the input data and increases the level of weight redundancy, which makes the network less sensitive to statistical differences between training and test data. We extend our method to learn the hyperparameters of the introduced weight reparameterization function. This avoids hyperparameter search and gives the network the opportunity to align the weight reparameterization with the training progress. We show experimentally that using weight compander in addition to standard regularization methods improves the performance of neural networks.Comment: Accepted by The International Joint Conference on Neural Network (IJCNN) 202

    Understanding Gradient Descent on Edge of Stability in Deep Learning

    Full text link
    Deep learning experiments by Cohen et al. [2021] using deterministic Gradient Descent (GD) revealed an Edge of Stability (EoS) phase when learning rate (LR) and sharpness (i.e., the largest eigenvalue of Hessian) no longer behave as in traditional optimization. Sharpness stabilizes around 2/2/LR and loss goes up and down across iterations, yet still with an overall downward trend. The current paper mathematically analyzes a new mechanism of implicit regularization in the EoS phase, whereby GD updates due to non-smooth loss landscape turn out to evolve along some deterministic flow on the manifold of minimum loss. This is in contrast to many previous results about implicit bias either relying on infinitesimal updates or noise in gradient. Formally, for any smooth function LL with certain regularity condition, this effect is demonstrated for (1) Normalized GD, i.e., GD with a varying LR ηt=ηL(x(t))\eta_t =\frac{\eta}{\| \nabla L(x(t)) \|} and loss LL; (2) GD with constant LR and loss LminxL(x)\sqrt{L- \min_x L(x)}. Both provably enter the Edge of Stability, with the associated flow on the manifold minimizing λ1(2L)\lambda_{1}(\nabla^2 L). The above theoretical results have been corroborated by an experimental study.Comment: 63 pages. This paper has been accepted for conference proceedings in the 39th International Conference on Machine Learning (ICML), 202
    corecore