83 research outputs found

    Analysis and use of the emotional context with wearable devices for games and intelligent assistants

    Get PDF
    In this paper, we consider the use of wearable sensors for providing affect-based adaptation in Ambient Intelligence (AmI) systems. We begin with discussion of selected issues regarding the applications of affective computing techniques. We describe our experiments for affect change detection with a range of wearable devices, such as wristbands and the BITalino platform, and discuss an original software solution, which we developed for this purpose. Furthermore, as a test-bed application for our work, we selected computer games. We discuss the state-of-the-art in affect-based adaptation in games, described in terms of the so-called affective loop. We present our original proposal of a conceptual design framework for games, called the affective game design patterns. As a proof-of-concept realization of this approach, we discuss some original game prototypes, which we have developed, involving emotion-based control and adaptation. Finally, we comment on a software framework, that we have previously developed, for context-aware systems which uses human emotional contexts. This framework provides means for implementing adaptive systems using mobile devices with wearable sensors

    TOBE: Tangible Out-of-Body Experience

    Get PDF
    We propose a toolkit for creating Tangible Out-of-Body Experiences: exposing the inner states of users using physiological signals such as heart rate or brain activity. Tobe can take the form of a tangible avatar displaying live physiological readings to reflect on ourselves and others. Such a toolkit could be used by researchers and designers to create a multitude of potential tangible applications, including (but not limited to) educational tools about Science Technologies Engineering and Mathematics (STEM) and cognitive science, medical applications or entertainment and social experiences with one or several users or Tobes involved. Through a co-design approach, we investigated how everyday people picture their physiology and we validated the acceptability of Tobe in a scientific museum. We also give a practical example where two users relax together, with insights on how Tobe helped them to synchronize their signals and share a moment

    Enabling Remote Responder Bio-Signal Monitoring in a Cooperative Human–Robot Architecture for Search and Rescue

    Get PDF
    The roles of emergency responders are challenging and often physically demanding, so it is essential that their duties are performed safely and effectively. In this article, we address real-time bio-signal sensor monitoring for responders in disaster scenarios. In particular, we propose the integration of a set of health monitoring sensors suitable for detecting stress, anxiety and physical fatigue in an Internet of Cooperative Agents architecture for search and rescue (SAR) missions (SAR-IoCA), which allows remote control and communication between human and robotic agents and the mission control center. With this purpose, we performed proof-of-concept experiments with a bio-signal sensor suite worn by firefighters in two high-fidelity SAR exercises. Moreover, we conducted a survey, distributed to end-users through the Fire Brigade consortium of the Provincial Council of Málaga, in order to analyze the firefighters’ opinion about biological signals monitoring while on duty. As a result of this methodology, we propose a wearable sensor suite design with the aim of providing some easy-to-wear integrated-sensor garments, which are suitable for emergency worker activity. The article offers discussion of user acceptance, performance results and learned lessons.This work has been partially funded by the Ministerio de Ciencia, Innovación y Universidades, Gobierno de España, projects RTI2018-093421-B-I00 and PID2021-122944OB-I00. Partial funding for open access charge: Universidad de Málag

    Gneuropathy: Validation process at clinical environment

    Get PDF
    Spinal cord injuries are one of the most traumatic situations with a major impact on a person's quality of life. This type of injury have a extremely impact in the performance of daily life activities not only due to motor alterations but also due to the appearance of neuropathic pain Throughout the rehabilitation process the evaluation and intervention methodologies are not very systematic and are not personalized. Thus, to bridge this gap, the VR4NeuroPain was developed a technology that associates virtual reality with a glove "GNeuroPathy". The glove "GNeuroPathy" allows the collection of physiological parameters, namely to identify the electrodermic activity (EDA) while the patient carries out activities in an immersive environment. The main objective of this article is to present the validation process of the "GNeuroPathy" in clinical context. "GNeuroPathy" was applied to a group of 17 individuals with incomplete spinal cord injury. The results showed that "GNeuroPathy" is easy to apply and is suitable for comfort and texture. Data were also collected from EDA and it was found that there is a significant difference in signal amplitude in patients with low and high functionality.preprintpublishe

    An Assessment of Single-Channel EMG Sensing for Gestural Input

    Get PDF
    Wearable devices of all kinds are becoming increasingly popular. One problem that plagues wearable devices, however, is how to interact with them. In this paper we construct a prototype electromyography (EMG) sensing device that captures a single channel of EMG sensor data corresponding to user gestures. We also implement a machine learning pipeline to recognize gestural input received via our prototype sensing device. Our goal is to assess the feasibility of using a BITalino EMG sensor to recognize gestural input on a mobile health (mHealth) wearable device known as Amulet. We conduct three experiments in which we use the EMG sensor to collect gestural input data from (1) the wrist, (2) the forearm, and (3) the bicep. Our results show that a single channel EMG sensor located near the wrist may be a viable approach to reliably recognizing simple gestures without mistaking them for common daily activities such as drinking from a cup, walking, or talking while moving your arms

    Fusion of musical contents, brain activity and short term physiological signals for music-emotion recognition

    Get PDF
    In this study we propose a multi-modal machine learning approach, combining EEG and Audio features for music emotion recognition using a categorical model of emotions. The dataset used consists of film music that was carefully created to induce strong emotions. Five emotion categories were adopted: Fear, Anger, Happy, Tender and Sad. EEG data was obtained from three male participants listening to the labeled music excerpts. Feature level fusion was adopted to combine EEG and Audio features. The results show that the multimodal system outperformed the EEG mono modal system. Additionally, we evaluated the contribution of each audio feature in the classification performance of the multimodal system. Preliminary results indicate a significant contribution of individual audio features in the classification accuracy, we also found that various audio features that noticeably contributed in the classification accuracy were also reported in previous research studying the correlation between audio features and emotion ratings using the same dataset.

    Establishing a Framework for the development of Multimodal Virtual Reality Interfaces with Applicability in Education and Clinical Practice

    Get PDF
    The development of Virtual Reality (VR) and Augmented Reality (AR) content with multiple sources of both input and output has led to countless contributions in a great many number of fields, among which medicine and education. Nevertheless, the actual process of integrating the existing VR/AR media and subsequently setting it to purpose is yet a highly scattered and esoteric undertaking. Moreover, seldom do the architectures that derive from such ventures comprise haptic feedback in their implementation, which in turn deprives users from relying on one of the paramount aspects of human interaction, their sense of touch. Determined to circumvent these issues, the present dissertation proposes a centralized albeit modularized framework that thus enables the conception of multimodal VR/AR applications in a novel and straightforward manner. In order to accomplish this, the aforesaid framework makes use of a stereoscopic VR Head Mounted Display (HMD) from Oculus Rift©, a hand tracking controller from Leap Motion©, a custom-made VR mount that allows for the assemblage of the two preceding peripherals and a wearable device of our own design. The latter is a glove that encompasses two core modules in its innings, one that is able to convey haptic feedback to its wearer and another that deals with the non-intrusive acquisition, processing and registering of his/her Electrocardiogram (ECG), Electromyogram (EMG) and Electrodermal Activity (EDA). The software elements of the aforementioned features were all interfaced through Unity3D©, a powerful game engine whose popularity in academic and scientific endeavors is evermore increasing. Upon completion of our system, it was time to substantiate our initial claim with thoroughly developed experiences that would attest to its worth. With this premise in mind, we devised a comprehensive repository of interfaces, amid which three merit special consideration: Brain Connectivity Leap (BCL), Ode to Passive Haptic Learning (PHL) and a Surgical Simulator

    Personality-based affective adaptation methods for intelligent systems

    Get PDF
    In this article, we propose using personality assessment as a way to adapt affective intelligent systems. This psychologically-grounded mechanism will divide users into groups that differ in their reactions to affective stimuli for which the behaviour of the system can be adjusted. In order to verify the hypotheses, we conducted an experiment on 206 people, which consisted of two proof-of-concept demonstrations: a “classical” stimuli presentation part, and affective games that provide a rich and controllable environment for complex emotional stimuli. Several significant links between personality traits and the psychophysiological signals (electrocardiogram (ECG), galvanic skin response (GSR)), which were gathered while using the BITalino (r)evolution kit platform, as well as between personality traits and reactions to complex stimulus environment, are promising results that indicate the potential of the proposed adaptation mechanism

    Towards a Not Obtrusive Low Cost Biosystem to Assess Risk Perception in Workplace Through Stress Detection

    Get PDF
    The main aim of the article is to build a method to assess risk perception in real time in order to early detect and prevent risk behaviors and possible human errors. To this end, the relation between mental workload and stress as critical factors affecting risk perception has been investigated. In particular the mental-physical activation generated by an increment of the workload has the effect of reducing the resources needed to perceive risk increasing the worker vulnerability. The complexity of the stress phenomenon suggested the adoption of an integrated view. The Functional Model has been adopted to for its holistic perspective (body-mind integration) and for the capability of being operationalized with physiological computing. In fact, limits of the current self reporting and subjective assessment methods prevent the possibility to have timely information to take decison. Finally a preliminary overview of how to implement a low cost not obtrusive biosystem to detect stress and assess in real time risk perception is presented
    • …
    corecore