15 research outputs found

    Unobtrusive Health Monitoring in Private Spaces: The Smart Vehicle

    Get PDF
    Unobtrusive in-vehicle health monitoring has the potential to use the driving time to perform regular medical check-ups. This work intends to provide a guide to currently proposed sensor systems for in-vehicle monitoring and to answer, in particular, the questions: (1) Which sensors are suitable for in-vehicle data collection? (2) Where should the sensors be placed? (3) Which biosignals or vital signs can be monitored in the vehicle? (4) Which purposes can be supported with the health data? We reviewed retrospective literature systematically and summarized the up-to-date research on leveraging sensor technology for unobtrusive in-vehicle health monitoring. PubMed, IEEE Xplore, and Scopus delivered 959 articles. We firstly screened titles and abstracts for relevance. Thereafter, we assessed the entire articles. Finally, 46 papers were included and analyzed. A guide is provided to the currently proposed sensor systems. Through this guide, potential sensor information can be derived from the biomedical data needed for respective purposes. The suggested locations for the corresponding sensors are also linked. Fifteen types of sensors were found. Driver-centered locations, such as steering wheel, car seat, and windscreen, are frequently used for mounting unobtrusive sensors, through which some typical biosignals like heart rate and respiration rate are measured. To date, most research focuses on sensor technology development, and most application-driven research aims at driving safety. Health-oriented research on the medical use of sensor-derived physiological parameters is still of interest

    An Ultrasound Imaging-Guided Robotic HIFU Ablation Experimental System and Accuracy Evaluations

    Get PDF
    In recent years, noninvasive thermal treatment by using high-intensity focused ultrasound (HIFU) has high potential in tumor treatment. The goal of this research is to develop an ultrasound imaging-guided robotic HIFU ablation system for tumor treatment. The system integrates the technologies of ultrasound image-assisted guidance, robotic positioning control, and HIFU treatment planning. With the assistance of ultrasound image guidance technology, the tumor size and location can be determined from ultrasound images as well as the robotic arm can be controlled to position the HIFU transducer to focus on the target tumor. After the development of the system, several experiments were conducted to measure the positioning accuracy of this system. The results show that the average positioning error is 1.01 mm with a standard deviation 0.34, and HIFU ablation accuracy is 1.32 mm with a standard deviation 0.58, which means this system is confirmed with its possibility and accuracy

    A review

    Get PDF
    Funding Information: PhD grant PD/BDE/150627/2020 was financed by Fundação para a Ciência e Tecnologia (FCT - Portugal) and Volkswagen Autoeuropa. Funding Information: The authors would like to thank Fundação para a Ciência e Tecnologia (FCT - Portugal), and Volkswagen Autoeuropa for co-financing the doctoral grant PD/BDE/150627/2020. Publisher Copyright: © 2023 The AuthorsIon Mobility Spectrometry (IMS) has gained relevance in the field of analytical techniques over the past decades. If compared with well-established techniques like mass spectrometry or infrared spectroscopy, IMS is considerably less developed or employed in specific fields but presents promising results and a substantial margin for improvements. Its outstanding sensitivity and selectivity, analytical flexibility, instrumental versatility and almost real-time results capacity have contributed to elevate IMS among the main analytical techniques for the detection of volatile organic compounds. Due to its growth potential, it is mandatory to assess in which scientific fields IMS has played a relevant role in the past years of academic research and understand in which areas it can become equally important in the near future. For this purpose, hundreds of scientific works from the past ten years were addressed and the most relevant were reviewed in this work. Three main categories of IMS applications were defined to group the reviewed articles: Environmental and Safety Research, Health Research and Food Research. In addition, some original studies were specifically developed for this review paper, to act as elucidative examples. The working principle of the IMS is included for clarification purposes. A glossary of all the mentioned compounds was also included. Throughout the text, it is clear how relevant IMS has become and how diverse its applicability can be, ranging from simpler topics like fraud detection to more complex ones like pathologies diagnosis. It is safe to say that IMS has been, step by step, gaining relevance as an analytical technique and its potential for supporting many diverse scientific fields is evident.publishersversionpublishe

    Telekomunikacja i Techniki Informacyjne, 2014, nr 3-4

    Get PDF
    kwartalni

    Um novo modelo de conceito para implantes ortopédicos instrumentados ativos

    Get PDF
    Doutoramento em Engenharia MecânicaTotal hip replacement (THR) is one of the most performed surgical procedures around the world. Millions of THR are carried out worldwide each year. Currently, THR revision rates can be higher than 10%. A significant increase of the number of primary and revision THRs, mainly among patients less than 65 years old (including those under 45 years old) has been predicted for the forthcoming years. A worldwide increase in the use of uncemented fixation has also been reported, incidence caused mainly by the significant increase of more active and/or younger patients. Besides the significant breakthroughs for uncemented fixations, they have not been able to ensure long-term implant survival. Up to date, current implant models have shown evidences of their inability to avoid revision procedures. The performance of implants will be optimized if they are designed to perform an effective control over the osseointegration process. To pursue this goal, improved surgical techniques and rehabilitation protocols, innovative bioactive coatings (including those for controlled delivery of drugs and/or other bio-agents in the bone-implant interface), the concepts of Passive Instrumented Implant and Active Instrumented Implant have been proposed. However, there are no conclusive demonstrations of the effectiveness of such methodologies. The main goal of this thesis is to propose a new concept model for instrumented implants to optimize the bone-implant integration: the self-powered instrumented active implant with ability to deliver controlled and personalized biophysical stimuli to target tissue areas. The need of such a new model is demonstrated by optimality analyses conducted to study the performance of instrumented and non-instrumented orthopaedic implants. Promising results on the potential of a therapeutic actuation driven by cosurface-based capacitive stimulation were achieved, as well as for self-powering instrumented active implants by magnetic levitation-based electromagnetic energy harvesting.A artroplastia total da anca (THR) é um dos procedimentos cirúrgicos mais realizados à escala global. Milhões de THRs são realizadas todos os anos em todo o mundo. Atualmente, as taxas de revisão destas artroplastias podem ser superiores a 10%. O número de THRs primárias e de revisão têm aumentado e estima-se que cresçam acentuadamente nos próximos anos, principalmente em pacientes com idades inferiores a 65 anos (incluindo aqueles com menos de 45 anos). Também se tem verificado uma tendência generalizada para o uso de fixações não cimentadas, incidência principalmente causada pelo aumento significativo de pacientes mais jovens e/ou activos. Embora se tenham realizado avanços científicos no projeto de implantes não cimentados, têm-se verificado o seu insucesso a longo-prazo. Encontram-se evidências da ineficácia dos modelos de implantes que têm sido desenvolvidos para evitar procedimentos de revisão. O desempenho dos implantes será otimizado se estes foram projetados para controlarem eficazmente o processo de osseointegração. Para se alcançar este objetivo, têm sido propostas a melhoria das técnicas cirúrgicas e dos protocolos de reabilitação, a inovação dos revestimentos (onde se incluem os revestimentos ativos projetados para a libertação controlada de fármacos e/ou outros bio-agentes) e os conceitos de Implante Instrumentado Passivo e Implante Instrumentado Ativo. Contudo, não existem demonstrações conclusivas da eficácia de tais metodologias. O principal objetivo desta tese é propor um novo modelo de conceito para implantes instrumentados para se otimizar a integração osso-implante: o implante instrumentado ativo, energeticamente auto-suficiente, com capacidade de aplicar estímulos biofísicos em tecidos-alvo de forma controlada e personalizada. A necessidade de um novo modelo é demonstrada através da realização de análises de otimalidade ao desempenho dos implantes instrumentados e não-instrumentados. Foram encontrados resultados promissores para o controlo otimizado da osseointegração usando este novo modelo, através da atuação terapêutica baseada na estimulação capacitiva com arquitetura em co-superfície, assim como para fornecer energia elétrica de forma autónoma por mecanismos de transdução baseados em indução eletromagnética usando configurações baseadas na levitação magnética

    Emotion and Stress Recognition Related Sensors and Machine Learning Technologies

    Get PDF
    This book includes impactful chapters which present scientific concepts, frameworks, architectures and ideas on sensing technologies and machine learning techniques. These are relevant in tackling the following challenges: (i) the field readiness and use of intrusive sensor systems and devices for capturing biosignals, including EEG sensor systems, ECG sensor systems and electrodermal activity sensor systems; (ii) the quality assessment and management of sensor data; (iii) data preprocessing, noise filtering and calibration concepts for biosignals; (iv) the field readiness and use of nonintrusive sensor technologies, including visual sensors, acoustic sensors, vibration sensors and piezoelectric sensors; (v) emotion recognition using mobile phones and smartwatches; (vi) body area sensor networks for emotion and stress studies; (vii) the use of experimental datasets in emotion recognition, including dataset generation principles and concepts, quality insurance and emotion elicitation material and concepts; (viii) machine learning techniques for robust emotion recognition, including graphical models, neural network methods, deep learning methods, statistical learning and multivariate empirical mode decomposition; (ix) subject-independent emotion and stress recognition concepts and systems, including facial expression-based systems, speech-based systems, EEG-based systems, ECG-based systems, electrodermal activity-based systems, multimodal recognition systems and sensor fusion concepts and (x) emotion and stress estimation and forecasting from a nonlinear dynamical system perspective

    Factories of the Future

    Get PDF
    Engineering; Industrial engineering; Production engineerin

    Micro/Nano Devices for Blood Analysis, Volume II

    Get PDF
    The development of micro- and nanodevices for blood analysis continues to be a growing interdisciplinary subject that demands the careful integration of different research fields. Following the success of the book “Micro/Nano Devices for Blood Analysis”, we invited more authors from the scientific community to participate in and submit their research for a second volume. Researchers from different areas and backgrounds cooperated actively and submitted high-quality research, focusing on the latest advances and challenges in micro- and nanodevices for diagnostics and blood analysis; micro- and nanofluidics; technologies for flow visualization and diagnosis; biochips, organ-on-a-chip and lab-on-a-chip devices; and their applications to research and industry

    Microfluidics and Nanofluidics Handbook

    Get PDF
    The Microfluidics and Nanofluidics Handbook: Two-Volume Set comprehensively captures the cross-disciplinary breadth of the fields of micro- and nanofluidics, which encompass the biological sciences, chemistry, physics and engineering applications. To fill the knowledge gap between engineering and the basic sciences, the editors pulled together key individuals, well known in their respective areas, to author chapters that help graduate students, scientists, and practicing engineers understand the overall area of microfluidics and nanofluidics. Topics covered include Finite Volume Method for Numerical Simulation Lattice Boltzmann Method and Its Applications in Microfluidics Microparticle and Nanoparticle Manipulation Methane Solubility Enhancement in Water Confined to Nanoscale Pores Volume Two: Fabrication, Implementation, and Applications focuses on topics related to experimental and numerical methods. It also covers fabrication and applications in a variety of areas, from aerospace to biological systems. Reflecting the inherent nature of microfluidics and nanofluidics, the book includes as much interdisciplinary knowledge as possible. It provides the fundamental science background for newcomers and advanced techniques and concepts for experienced researchers and professionals
    corecore