6,656 research outputs found

    Uptake of BIM and IPD within the UK AEC Industry: the evolving role of the architectural technologist

    Get PDF
    Building Information Modelling is not only a tool, but also the process of creation, maintenance, distribution and co-ordination of an integrated database that collaboratively stores 2D and 3D information, with embedded physical and functional data within a project-building model. The uptake of BIM within the UK Architecture, Engineering and Construction (AEC) industry has been slow since the 1980’s, but over recent years, adoptions have increased. The increased collaborative nature of BIM, external data sharing techniques and progressively complex building design, promotes requirements for design teams to coordinate and communicate more effectively to achieve project goals. To manage this collaboration, new or evolved job roles may emerge. This research examined the current use of BIM, Integrated Project Delivery (IPD) and collaborative working in the UK AEC industry and job roles that have evolved or been created to cater for them. Using semi-structured interviews the interviewees indicated while several of the key enablers of IPD were being used, IPD itself had not been fully adopted. BIM was being used with some success but improvements could be made. New job roles such as the BIM Engineer and BIM Coordinator had been seen in the industry and evidence that the Architectural Technologist (AT) role is evolving into a more multidisciplinary role; this reflects similar findings of recent research

    Requirements for model server enabled collaborating on building information models

    Get PDF
    The application of Building Information Modelling (BIM) has demonstrated enormous potential to deliver consistency in the construction collaboration process. BIM can define an explicit configuration for digitized information exchange, however the technology to collaborate on models has not yet delivered the industry requirements for BIM collaboration. This research project is intended to provide a fresh review of industry requirements for BIM collaboration and will analyse how these requirements can be supported using a model server as a collaboration platform. This paper presents a review of existing collaboration platforms, with a particular focus to evaluate the research and development efforts on model servers as a collaboration platform. This paper also reports on the findings of three focus group sessions with industry practitioners to identify any problems in the available collaboration systems. The focus group findings identify a number of issues in current collaboration environments which help to understand the main domains of user requirements for BIM collaboration. These requirement domains will be further analysed to identify functional and technical specifications for a model server enabled collaboration platform

    Overview of building information modelling in healthcare projects

    Get PDF
    In this paper, we explore how BIM functionalities together with novel management concepts and methods have been utilized in thirteen hospital projects in the United States and the United Kingdom. Secondary data collection and analysis were used as the method. Initial findings indicate that the utilization of BIM enables a holistic view of project delivery and helps to integrate project parties into a collaborative process. The initiative to implement BIM must come from the top down to enable early involvement of all key stakeholders. It seems that it is rather resistance from people to adapt to the new way of working and thinking than immaturity of technology that hinders the utilization of BIM

    Bibliometric Maps of BIM and BIM in Universities: A Comparative Analysis

    Get PDF
    Building Information Modeling (BIM) is increasingly important in the architecture and engineering fields, and especially in the field of sustainability through the study of energy. This study performs a bibliometric study analysis of BIM publications based on the Scopus database during the whole period from 2003 to 2018. The aim was to establish a comparison of bibliometric maps of the building information model and BIM in universities. The analyzed data included 4307 records produced by a total of 10,636 distinct authors from 314 institutions. Engineering and computer science were found to be the main scientific fields involved in BIM research. Architectural design are the central theme keywords, followed by information theory and construction industry. The final stage of the study focuses on the detection of clusters in which global research in this field is grouped. The main clusters found were those related to the BIM cycle, including construction management, documentation and analysis, architecture and design, construction/fabrication, and operation and maintenance (related to energy or sustainability). However, the clusters of the last phases such as demolition and renovation are not present, which indicates that this field suntil needs to be further developed and researched. With regard to the evolution of research, it has been observed how information technologies have been integrated over the entire spectrum of internet of things (IoT). A final key factor in the implementation of the BIM is its inclusion in the curriculum of technical careers related to areas of construction such as civil engineering or architecture

    BIM and its impact upon project success outcomes from a Facilities Management perspective

    Get PDF
    The uptake of Building Information Modelling (BIM) has been increasing, but some of its promoted potential benefits have been slow to materialise. In particular, claims that BIM will revolutionise facilities management (FM) creating efficiencies in the whole-life of building operations have yet to be achieved on a wide scale, certainly in comparison to tangible progress made for the prior design and construction phases. To attempt to unravel the factors at play in the adoption of BIM during the operational phase, and in particular, understand if adoption by facilities managers (FMs) is lagging behind other disciplines, this study aims to understand if current BIM processes can ease the challenges in this area faced by facilities management project stakeholders. To do this, success from a facilities management viewpoint is considered and barriers to facilities management success are explored, with focused BIM use proposed as a solution to these barriers. Qualitative research was undertaken, using semi structured interviews to collect data from a non-probability sample of 7 project- and facilities- management practitioners. Key results from this study show that the main barrier to BIM adoption by facilities managers is software interoperability, with reports that facilities management systems are unable to easily import BIM data produced during the design and construction stages. Additionally, facilities managers were not treated as salient stakeholders by Project Managers, further negatively affecting facilities management project success outcomes. A µresistance to change was identified as another barrier, as facilities managers were sceptical of the ability of current BIMenabled systems promoted as being FM compatible to be able to replicate their existing Computer Aided Facility Management (CAFM) legacy software and its user required capabilities. The results of this study highlight that more work is needed to ensure that BIM benefits the end user, as there was no reported use of BIM data for dedicated facilities management purposes. Further investigation into the challenges of interoperability could add significant value to this developing research area.The uptake of Building Information Modelling (BIM) has been increasing, but some of its promoted potential benefits have been slow to materialise. In particular, claims that BIM will revolutionise facilities management (FM) creating efficiencies in the whole-life of building operations have yet to be achieved on a wide scale, certainly in comparison to tangible progress made for the prior design and construction phases. To attempt to unravel the factors at play in the adoption of BIM during the operational phase, and in particular, understand if adoption by facilities managers (FMs) is lagging behind other disciplines, this study aims to understand if current BIM processes can ease the challenges in this area faced by facilities management project stakeholders. To do this, success from a facilities management viewpoint is considered and barriers to facilities management success are explored, with focused BIM use proposed as a solution to these barriers. Qualitative research was undertaken, using semi structured interviews to collect data from a non-probability sample of 7 project- and facilities- management practitioners. Key results from this study show that the main barrier to BIM adoption by facilities managers is software interoperability, with reports that facilities management systems are unable to easily import BIM data produced during the design and construction stages. Additionally, facilities managers were not treated as salient stakeholders by Project Managers, further negatively affecting facilities management project success outcomes. A µresistance to change was identified as another barrier, as facilities managers were sceptical of the ability of current BIMenabled systems promoted as being FM compatible to be able to replicate their existing Computer Aided Facility Management (CAFM) legacy software and its user required capabilities. The results of this study highlight that more work is needed to ensure that BIM benefits the end user, as there was no reported use of BIM data for dedicated facilities management purposes. Further investigation into the challenges of interoperability could add significant value to this developing research area

    Building information modelling project decision support framework

    Get PDF
    Building Information Modelling (BIM) is an information technology [IT] enabled approach to managing design data in the AEC/FM (Architecture, Engineering and Construction/ Facilities Management) industry. BIM enables improved interdisciplinary collaboration across distributed teams, intelligent documentation and information retrieval, greater consistency in building data, better conflict detection and enhanced facilities management. Despite the apparent benefits the adoption of BIM in practice has been slow. Workshops with industry focus groups were conducted to identify the industry needs, concerns and expectations from participants who had implemented BIM or were BIM “ready”. Factors inhibiting BIM adoption include lack of training, low business incentives, perception of lack of rewards, technological concerns, industry fragmentation related to uneven ICT adoption practices, contractual matters and resistance to changing current work practice. Successful BIM usage depends on collective adoption of BIM across the different disciplines and support by the client. The relationship of current work practices to future BIM scenarios was identified as an important strategy as the participants believed that BIM cannot be efficiently used with traditional practices and methods. The key to successful implementation is to explore the extent to which current work practices must change. Currently there is a perception that all work practices and processes must adopt and change for effective usage of BIM. It is acknowledged that new roles and responsibilities are emerging and that different parties will lead BIM on different projects. A contingency based approach to the problem of implementation was taken which relies upon integration of BIM project champion, procurement strategy, team capability analysis, commercial software availability/applicability and phase decision making and event analysis. Organizations need to understand: (a) their own work processes and requirements; (b) the range of BIM applications available in the market and their capabilities (c) the potential benefits of different BIM applications and their roles in different phases of the project lifecycle, and (d) collective supply chain adoption capabilities. A framework is proposed to support organizations selection of BIM usage strategies that meet their project requirements. Case studies are being conducted to develop the framework. The results of the preliminary design management case study is presented for contractor led BIM specific to the design and construct procurement strategy

    A study of BIM collaboration requirements and available features in existing model collaboration systems

    Get PDF
    Established collaboration practices in the construction industry are document centric and are challenged by the introduction of Building Information Modelling (BIM). Document management collaboration systems (e.g. Extranets) have significantly improved the document collaboration in recent years; however their capabilities for model collaboration are limited and do not support the complex requirements of BIM collaboration. The construction industry is responding to this situation by adopting emerging model collaboration systems (MCS), such as model servers, with the ability to exploit and reuse information directly from the models to extend the current intra-disciplinary collaboration towards integrated multi-disciplinary collaboration on models. The functions of existing MCSs have evolved from the manufacturing industry and there is no concrete study on how these functions correspond to the requirements of the construction industry, especially with BIM requirements. This research has conducted focus group sessions with major industry disciplines to explore the user requirements for BIM collaboration. The research results have been used to categorise and express the features of existing MCS which are then analysed in selected MCS from a user’s perspective. The potential of MCS and the match or gap in user requirements and available model collaboration features is discussed. This study concludes that model collaborative solutions for construction industry users are available in different capacities; however a comprehensive custom built solution is yet to be realized. The research results are useful for construction industry professionals, software developers and researchers involved in exploring collaborative solutions for the construction industry

    The interaction of lean and building information modeling in construction

    Get PDF
    Lean construction and Building Information Modeling are quite different initiatives, but both are having profound impacts on the construction industry. A rigorous analysis of the myriad specific interactions between them indicates that a synergy exists which, if properly understood in theoretical terms, can be exploited to improve construction processes beyond the degree to which it might be improved by application of either of these paradigms independently. Using a matrix that juxtaposes BIM functionalities with prescriptive lean construction principles, fifty-six interactions have been identified, all but four of which represent constructive interaction. Although evidence for the majority of these has been found, the matrix is not considered complete, but rather a framework for research to explore the degree of validity of the interactions. Construction executives, managers, designers and developers of IT systems for construction can also benefit from the framework as an aid to recognizing the potential synergies when planning their lean and BIM adoption strategies

    The practice of interdisciplinary design in Building Information Modelling (BIM)-enabled projects: A workplace study

    Get PDF
    Building Information Modelling (BIM) is believed to enable significant efficiency improvements in interdisciplinary design in construction. This is mainly based on the rhetoric of BIM dominated by promoting its capabilities for data transactions. However, literature shows that there are problems in applying BIM technologies in practice, because their use causes unanticipated shifts in the focus and organisation of design projects. Furthermore, changes wrought by applied BIM technologies transcend the boundaries of the organisation of individual projects, and displace the previous ethos of ‘professionalism’ in design in construction. Consequently, there is unresolved confusion and evaluation about BIM technologies in terms of the nature and extent of the change they create. The present research aims to develop a better-informed understanding of BIM-driven change in design in construction through an empirical study of ‘organising’ and ‘order’ in BIM-enabled interdisciplinary design projects. Using a practice-based methodology, this research focused on the interdisciplinary interactions during three projects. A practice-based methodology sees ‘organising ‘and ‘order ‘as continuously accomplished through the ongoing activities that are performed in practices. Therefore, the research scrutinised the interdisciplinary activities and processes which look mundane but enable ‘organising’, and ‘order ‘in the studied projects. Three explanatory organisational concepts are developed through the analyses of the empirical data: ‘organisational premises’, ‘purposeful artefact’, and ‘technological premises’. These concepts provide three different explanations about how ‘organising ‘interdisciplinary design in BIM-enabled projects is accomplished through the ongoing interdisciplinary activities performed in practices. Thus, they produce rich understanding of the complex organisational phenomena. Interdisciplinary design development is then seen as a ‘continuous process of (re-)establishing a shared sense of purposefulness ‘among the members of a design team, which largely depends on previous shared experiences. This continuous requirement for mutual dependency does not align well with the operational characteristics of BIM technologies, which are fundamentally planned and rigid. Therefore, practitioners experience divergent views of ‘organising’ (i.e. and ‘work’) in BIM-enabled projects. The ‘ordering ‘induced by BIM technologies appears in the interface of these different views of ‘organising’(and ‘work'), as it is here that practices unfold, and become directed towards one or other view. In such cases, the extent to which information modelling and design development can be prioritised is determined by the level of reliance on technology, and the level of authority of those individuals who are in control of the BIM technologies. The practice-based understandings of ‘organising ‘and ‘order ‘that emerge from the analyses are used herein to refine the notions of ‘design’, ‘design collaboration’, ‘use of information and communication technologies (ICT) in construction design’, and ‘CT-driven change in construction design’. Thus, the practice-based methodology reveals that some of the main arguments upon which the promotional rhetoric of BIM is founded are incomplete or flawed. Through its methodological and theoretical contributions, the present research evaluated BIM-driven change in design in construction, and created an agenda for further critical and practically-relevant studies into interdisciplinary design in construction. This shows the need for further research which should re-establish the use and development of BIM by aligning it with the realities of actual practice
    corecore