7,339 research outputs found

    BFT Selection

    Get PDF
    International audienceOne-size-fits-all protocols are hard to achieve in Byzantine fault tolerance (BFT). As an alternative, BFT users, e.g., enterprises, need an easy and efficient method to choose the most convenient protocol that matches their preferences best. The various BFT protocols that have been proposed so far differ significantly in their characteristics and performance which makes choosing the `preferred' protocol hard. In addition, if the state of the deployed system is too fluctuating, then perhaps using multiple protocols at once is needed; this requires a dynamic selection mechanism to move from one protocol to another. In this paper, we present the first BFT selection model and algorithm that can be used to choose the most convenient protocol according to user preferences. The selection algorithm applies some mathematical formulas to make the selection process easy and automatic. The algorithm operates in three modes: Static, Dynamic, and Heuristic. The Static mode addresses the cases where a single protocol is needed; the Dynamic mode assumes that the system conditions are quite fluctuating and thus requires runtime decisions, and the Heuristic mode is similar to the Dynamic mode but it uses additional heuristics to improve user choices. We give some examples to describe how selection occurs. We show that our approach is automated, easy, and yields reasonable results that match reality. To the best of our knowledge, this is the first work that addresses selection in BFT

    Genetic parameters for carcass traits and body weight using a Bayesian approach in the Canchim cattle.

    Get PDF
    Correlation between genetic parameters and factors such as backfat thickness (BFT), rib eye area (REA), and body weight (BW) were estimated for Canchim beef cattle raised in natural pastures of Brazil. Data from 1648 animals were analyzed using multi-trait (BFT, REA, and BW) animal models by the Bayesian approach. This model included the effects of contemporary group, age, and individual heterozygosity as covariates. In addition, direct additive genetic and random residual effects were also analyzed. Heritability estimated for BFT (0.16), REA (0.50), and BW (0.44) indicated their potential for genetic improvements and response to selection processes. Furthermore, genetic correlations between BW and the remaining traits were high (P > 0.50), suggesting that selection for BW could improve REA and BFT. On the other hand, genetic correlation between BFT and REA was low (P = 0.39 ± 0.17), and included considerable variations, suggesting that these traits can be jointly included as selection criteria without influencing each other. We found that REA and BFT responded to the selection processes, as measured by ultrasound. Therefore, selection for yearling weight results in changes in REA and BFT

    Comparison of alternative approaches to single-trait genomic prediction using genotyped and non-genotyped Hanwoo beef cattle.

    Get PDF
    BackgroundGenomic predictions from BayesA and BayesB use training data that include animals with both phenotypes and genotypes. Single-step methodologies allow additional information from non-genotyped relatives to be included in the analysis. The single-step genomic best linear unbiased prediction (SSGBLUP) method uses a relationship matrix computed from marker and pedigree information, in which missing genotypes are imputed implicitly. Single-step Bayesian regression (SSBR) extends SSGBLUP to BayesB-like models using explicitly imputed genotypes for non-genotyped individuals.MethodsCarcass records included 988 genotyped Hanwoo steers with 35,882 SNPs and 1438 non-genotyped steers that were measured for back-fat thickness (BFT), carcass weight (CWT), eye-muscle area, and marbling score (MAR). Single-trait pedigree-based BLUP, Bayesian methods using only genotyped individuals, SSGBLUP and SSBR methods were compared using cross-validation.ResultsMethods using genomic information always outperformed pedigree-based BLUP when the same phenotypic data were modeled from either genotyped individuals only or both genotyped and non-genotyped individuals. For BFT and MAR, accuracies were higher with single-step methods than with BayesB, BayesC and BayesCπ. Gains in accuracy with the single-step methods ranged from +0.06 to +0.09 for BFT and from +0.05 to +0.07 for MAR. For CWT, SSBR always outperformed the corresponding Bayesian methods that used only genotyped individuals. However, although SSGBLUP incorporated information from non-genotyped individuals, prediction accuracies were lower with SSGBLUP than with BayesC (π = 0.9999) and BayesB (π = 0.98) for CWT because, for this particular trait, there was a benefit from the mixture priors of the effects of the single nucleotide polymorphisms.ConclusionsSingle-step methods are the preferred approaches for prediction combining genotyped and non-genotyped animals. Alternative priors allow SSBR to outperform SSGBLUP in some cases

    NcPred for accurate nuclear protein prediction using n-mer statistics with various classification algorithms

    Get PDF
    Prediction of nuclear proteins is one of the major challenges in genome annotation. A method, NcPred is described, for predicting nuclear proteins with higher accuracy exploiting n-mer statistics with different classification algorithms namely Alternating Decision (AD) Tree, Best First (BF) Tree, Random Tree and Adaptive (Ada) Boost. On BaCello dataset [1], NcPred improves about 20% accuracy with Random Tree and about 10% sensitivity with Ada Boost for Animal proteins compared to existing techniques. It also increases the accuracy of Fungal protein prediction by 20% and recall by 4% with AD Tree. In case of Human protein, the accuracy is improved by about 25% and sensitivity about 10% with BF Tree. Performance analysis of NcPred clearly demonstrates its suitability over the contemporary in-silico nuclear protein classification research
    • 

    corecore