51 research outputs found

    Swarm intelligence and evolutionary computation approaches for 2D face recognition: a systematic review

    Get PDF
    A wide range of approaches for 2D face recognition (FR) systems can be found in the literature due to its high applicability and issues that need more investigation yet which include occlusion, variations in scale, facial expression, and illumination. Over the last years, a growing number of improved 2D FR systems using Swarm Intelligence and Evolutionary Computing algorithms have emerged. The present work brings an up-to-date Systematic Literature Review (SLR) concerning the use of Swarm Intelligence and Evolutionary Computation applied in 2D FR systems. Also, this review analyses and points out the key techniques and algorithms used and suggests some directions for future research

    Development of Novel Independent Component Analysis Techniques and their Applications

    Get PDF
    Real world problems very often provide minimum information regarding their causes. This is mainly due to the system complexities and noninvasive techniques employed by scientists and engineers to study such systems. Signal and image processing techniques used for analyzing such systems essentially tend to be blind. Earlier, training signal based techniques were used extensively for such analyses. But many times either these training signals are not practicable to be availed by the analyzer or become burden on the system itself. Hence blind signal/image processing techniques are becoming predominant in modern real time systems. In fact, blind signal processing has become a very important topic of research and development in many areas, especially biomedical engineering, medical imaging, speech enhancement, remote sensing, communication systems, exploration seismology, geophysics, econometrics, data mining, sensor networks etc. Blind Signal Processing has three major areas: Blind Signal Separation and Extraction, Independent Component Analysis (ICA) and Multichannel Blind Deconvolution and Equalization. ICA technique has also been typically applied to the other two areas mentioned above. Hence ICA research with its wide range of applications is quite interesting and has been taken up as the central domain of the present work

    Latent variable regression and applications to planetary seismic instrumentation

    Get PDF
    The work presented in this thesis is framed by the concept of latent variables, a modern data analytics approach. A latent variable represents an extracted component from a dataset which is not directly measured. The concept is first applied to combat the problem of ill-posed regression through the promising method of partial least squares (PLS). In this context the latent variables within a data matrix are extracted through an iterative algorithm based on cross-covariance as an optimisation criterion. This work first extends the PLS algorithm, using adaptive and recursive techniques, for online, non-stationary data applications. The standard PLS algorithm is further generalised for complex-, quaternion- and tensor-valued data. In doing so it is shown that the multidimensional algebras facilitate physically meaningful representations, demonstrated through smart-grid frequency estimation and image-classification tasks. The second part of the thesis uses this knowledge to inform a performance analysis of the MEMS microseismometer implemented for the InSight mission to Mars. This is given in terms of the sensor's intrinsic self-noise, the estimation of which is achieved from experimental data with a colocated instrument. The standard coherence and proposed delta noise estimators are analysed with respect to practical issues. The implementation of algorithms for the alignment, calibration and post-processing of the data then enabled a definitive self-noise estimate, validated from data acquired in ultra-quiet, deep-space environment. A method for the decorrelation of the microseismometer's output from its thermal response is proposed. To do so a novel sensor fusion approach based on the Kalman filter is developed for a full-band transfer-function correction, in contrast to the traditional ill-posed frequency division method. This algorithm was applied to experimental data which determined the thermal model coefficients while validating the sensor's performance at tidal frequencies 1E-5Hz and in extreme environments at -65C. This thesis, therefore, provides a definitive view of the latent variables perspective. This is achieved through the general algorithms developed for regression with multidimensional data and the bespoke application to seismic instrumentation.Open Acces

    The 2020 magnetism roadmap

    Get PDF
    Following the success and relevance of the 2014 and 2017 Magnetism Roadmap articles, this 2020 Magnetism Roadmap edition takes yet another timely look at newly relevant and highly active areas in magnetism research. The overall layout of this article is unchanged, given that it has proved the most appropriate way to convey the most relevant aspects of today's magnetism research in a wide variety of sub-fields to a broad readership. A different group of experts has again been selected for this article, representing both the breadth of new research areas, and the desire to incorporate different voices and viewpoints. The latter is especially relevant for thistype of article, in which one's field of expertise has to be accommodated on two printed pages only, so that personal selection preferences are naturally rather more visible than in other types of articles. Most importantly, the very relevant advances in the field of magnetism research in recent years make the publication of yet another Magnetism Roadmap a very sensible and timely endeavour, allowing its authors and readers to take another broad-based, but concise look at the most significant developments in magnetism, their precise status, their challenges, and their anticipated future developments. While many of the contributions in this 2020 Magnetism Roadmap edition have significant associations with different aspects of magnetism, the general layout can nonetheless be classified in terms of three main themes: (i) phenomena, (ii) materials and characterization, and (iii) applications and devices. While these categories are unsurprisingly rather similar to the 2017 Roadmap, the order is different, in that the 2020 Roadmap considers phenomena first, even if their occurrences are naturally very difficult to separate from the materials exhibiting such phenomena. Nonetheless, the specifically selected topics seemed to be best displayed in the order presented here, in particular, because many of the phenomena or geometries discussed in (i) can be found or designed into a large variety of materials, so that the progression of the article embarks from more general concepts to more specific classes of materials in the selected order. Given that applications and devices are based on both phenomena and materials, it seemed most appropriate to close the article with the application and devices section (iii) once again. The 2020 Magnetism Roadmap article contains 14 sections, all of which were written by individual authors and experts, specifically addressing a subject in terms of its status, advances, challenges and perspectives in just two pages. Evidently, this two-page format limits the depth to which each subject can be described. Nonetheless, the most relevant and key aspects of each field are touched upon, which enables the Roadmap as whole to give its readership an initial overview of and outlook into a wide variety of topics and fields in a fairly condensed format. Correspondingly, the Roadmap pursues the goal of giving each reader a brief reference frame of relevant and current topics in modern applied magnetism research, even if not all sub-fields can be represented here. The first block of this 2020 Magnetism Roadmap, which is focussed on (i) phenomena, contains five contributions, which address the areas of interfacial Dzyaloshinskii-Moriya interactions, and two-dimensional and curvilinear magnetism, as well as spin-orbit torque phenomena and all optical magnetization reversal. All of these contributions describe cutting edge aspects of rather fundamental physical processes and properties, associated with new and improved magnetic materials' properties, together with potential developments in terms of future devices and technology. As such, they form part of a widening magnetism 'phenomena reservoir' for utilization in applied magnetism and related device technology. The final block (iii) of this article focuses on such applications and device-related fields in four contributions relating to currently active areas of research, which are of course utilizing magnetic phenomena to enable specific functions. These contributions highlight the role of magnetism or spintronics in the field of neuromorphic and reservoir computing, terahertz technology, and domain wall-based logic. One aspect common to all of these application-related contributions is that they are not yet being utilized in commercially available technology; it is currently still an open question, whether or not such technological applications will be magnetism-based at all in the future, or if other types of materials and phenomena will yet outperform magnetism. This last point is actually a very good indication of the vibrancy of applied magnetism research today, given that it demonstrates that magnetism research is able to venture into novel application fields, based upon its portfolio of phenomena, effects and materials. This materials portfolio in particular defines the central block (ii) of this article, with its five contributions interconnecting phenomena with devices, for which materials and the characterization of their properties is the decisive discriminator between purely academically interesting aspects and the true viability of real-life devices, because only available materials and their associated fabrication and characterization methods permit reliable technological implementation. These five contributions specifically address magnetic films and multiferroic heterostructures for the purpose of spin electronic utilization, multi-scale materials modelling, and magnetic materials design based upon machine-learning, as well as materials characterization via polarized neutron measurements. As such, these contributions illustrate the balanced relevance of research into experimental and modelling magnetic materials, as well the importance of sophisticated characterization methods that allow for an ever-more refined understanding of materials. As a combined and integrated article, this 2020 Magnetism Roadmap is intended to be a reference point for current, novel and emerging research directions in modern magnetism, just as its 2014 and 2017 predecessors have been in previous years

    Molecular dynamics simulations of nanoclusters in neuromorphic systems

    Get PDF
    Neuromorphic computing is a new computing paradigm that deals with computing tasks using inter-connected artificial neurons inspired by the natural neurons in the human brain. This computational architecture is more efficient in performing many complex tasks such a pattern recognition and has promise at overcoming some of the limitations of conventional computers. Among the emerging types of artificial neurons, a cluster-based neuromorphic device is a promising system with good costefficiency because of a simple fabrication process. This device functions using the formation and breakage of the connections (“synapses”) between clusters, driven by the bias voltage applied to the clusters. The mechanisms of the formation and breakage of these connections are thus of the utmost interest. In this thesis, the molecular dynamics simulation method is used to explore the mechanisms of the formation and breakage of the connections (“filaments”) between the clusters in a model of neuromorphic device. First, the Joule heating mechanism of filament breakage is explored using a model consisting of Au nanowire that connects two Au1415 clusters. Upon heating, the atoms of the nanofilament gradually aggregate towards the clusters, causing the middle of the wire to graduallythin and then suddenly break. Most of the system remains crystalline during this process, but the centre becomes molten. The terminal clusters increase the melting point of the nanowires by fixing them and act as recrystallisation regions. A strong dependence of the breaking temperature is found not only on the width of the nanowires but also their length and atomic structure. Secondly, the bridge formation and thermal breaking processes between Au1415 clusters on a graphite substrate are also simulated. The bridging process , which can heal a broken filament, is driven by diffusion of gold along the graphite substrate. The characteristic times of bridge formation are explored at elevated simulation temperatures to estimate the longer characteristic times of formation at room-temperature conditions. The width of the bridge formed has a power-law dependence on the simulation time, and the mechanism is a combination of diffusion and viscous flow. Simulations of bridgebreaking are also conducted and reveal the existence of a voltage threshold that must be reached to activate the breakage. The role of the substrate in the bridge formation and breakage processes is revealed as a medium of diffusion. Lastly, to explore future potential cluster materials, the thermal behaviour of Pb-Al core-shell clusters is studied. The core and shell are found to melt separately. In fact, the core atoms of nanoclusters tend to escape their shells and partially cover them, leading to a preference for a segregated state. The melting point of the core can either be depressed or elevated, depending on the thickness of the shell due to different mechanisms

    A knowledge-based system for automated discovery of ecological interactions in flower-visiting data.

    Get PDF
    Doctor of Philosophy in Mathematics, Statistics and Computer Science. University of KwaZulu-Natal, Durban 2017Studies on the community ecology of flower-visiting insects, which can be inferred to pollinate flowers, are important in agriculture and nature conservation. Many scientific observations of flower-visiting insects are associated with digitized records of insect specimens preserved in natural history collections. Specimen annotations include heterogeneous and incomplete, in situ field documentation of ecologically significant relationships between individual organisms (i.e. insects and plants), which are nevertheless potentially valuable. A wealth of unrepresented biodiversity and ecological knowledge can be unlocked from such detailed data by augmenting the data with expert knowledge encoded in knowledge models. An analysis of the knowledge representation requirements of flower-visiting community ecologists is presented, as well as an implementation and evaluation of a prototype knowledge-based system for automated semantic enrichment, semantic mediation and interpretation of flower-visiting data. A novel component of the system is a semantic architecture which incorporates knowledge models validated by experts. The system combines ontologies and a Bayesian network to enrich, integrate and interpret flower- visiting data, specifically to discover ecological interactions in the data. The system’s effectiveness, to acquire and represent expert knowledge and simulate the inferencing ability of expert flower-visiting ecologists, is evaluated and discussed. The knowledge-based system will allow a novice ecologist to use standardised semantics to construct interaction networks automatically and objectively. This could be useful, inter alia, when comparing interaction networks for different periods of time at the same place or different places at the same time. While the system architecture encompasses three levels of biological organization, data provenance can be traced back to occurrences of individual organisms preserved as evidence in natural history collections. The potential impact of the semantic architecture could be significant in the field of biodiversity and ecosystem informatics because ecological interactions are important in applied ecological studies, e.g. in freshwater biomonitoring or animal migration

    Advances in Meta-Heuristic Optimization Algorithms in Big Data Text Clustering

    Full text link
    This paper presents a comprehensive survey of the meta-heuristic optimization algorithms on the text clustering applications and highlights its main procedures. These Artificial Intelligence (AI) algorithms are recognized as promising swarm intelligence methods due to their successful ability to solve machine learning problems, especially text clustering problems. This paper reviews all of the relevant literature on meta-heuristic-based text clustering applications, including many variants, such as basic, modified, hybridized, and multi-objective methods. As well, the main procedures of text clustering and critical discussions are given. Hence, this review reports its advantages and disadvantages and recommends potential future research paths. The main keywords that have been considered in this paper are text, clustering, meta-heuristic, optimization, and algorithm

    A Two-Level Information Modelling Translation Methodology and Framework to Achieve Semantic Interoperability in Constrained GeoObservational Sensor Systems

    Get PDF
    As geographical observational data capture, storage and sharing technologies such as in situ remote monitoring systems and spatial data infrastructures evolve, the vision of a Digital Earth, first articulated by Al Gore in 1998 is getting ever closer. However, there are still many challenges and open research questions. For example, data quality, provenance and heterogeneity remain an issue due to the complexity of geo-spatial data and information representation. Observational data are often inadequately semantically enriched by geo-observational information systems or spatial data infrastructures and so they often do not fully capture the true meaning of the associated datasets. Furthermore, data models underpinning these information systems are typically too rigid in their data representation to allow for the ever-changing and evolving nature of geo-spatial domain concepts. This impoverished approach to observational data representation reduces the ability of multi-disciplinary practitioners to share information in an interoperable and computable way. The health domain experiences similar challenges with representing complex and evolving domain information concepts. Within any complex domain (such as Earth system science or health) two categories or levels of domain concepts exist. Those concepts that remain stable over a long period of time, and those concepts that are prone to change, as the domain knowledge evolves, and new discoveries are made. Health informaticians have developed a sophisticated two-level modelling systems design approach for electronic health documentation over many years, and with the use of archetypes, have shown how data, information, and knowledge interoperability among heterogenous systems can be achieved. This research investigates whether two-level modelling can be translated from the health domain to the geo-spatial domain and applied to observing scenarios to achieve semantic interoperability within and between spatial data infrastructures, beyond what is possible with current state-of-the-art approaches. A detailed review of state-of-the-art SDIs, geo-spatial standards and the two-level modelling methodology was performed. A cross-domain translation methodology was developed, and a proof-of-concept geo-spatial two-level modelling framework was defined and implemented. The Open Geospatial Consortium’s (OGC) Observations & Measurements (O&M) standard was re-profiled to aid investigation of the two-level information modelling approach. An evaluation of the method was undertaken using II specific use-case scenarios. Information modelling was performed using the two-level modelling method to show how existing historical ocean observing datasets can be expressed semantically and harmonized using two-level modelling. Also, the flexibility of the approach was investigated by applying the method to an air quality monitoring scenario using a technologically constrained monitoring sensor system. This work has demonstrated that two-level modelling can be translated to the geospatial domain and then further developed to be used within a constrained technological sensor system; using traditional wireless sensor networks, semantic web technologies and Internet of Things based technologies. Domain specific evaluation results show that twolevel modelling presents a viable approach to achieve semantic interoperability between constrained geo-observational sensor systems and spatial data infrastructures for ocean observing and city based air quality observing scenarios. This has been demonstrated through the re-purposing of selected, existing geospatial data models and standards. However, it was found that re-using existing standards requires careful ontological analysis per domain concept and so caution is recommended in assuming the wider applicability of the approach. While the benefits of adopting a two-level information modelling approach to geospatial information modelling are potentially great, it was found that translation to a new domain is complex. The complexity of the approach was found to be a barrier to adoption, especially in commercial based projects where standards implementation is low on implementation road maps and the perceived benefits of standards adherence are low. Arising from this work, a novel set of base software components, methods and fundamental geo-archetypes have been developed. However, during this work it was not possible to form the required rich community of supporters to fully validate geoarchetypes. Therefore, the findings of this work are not exhaustive, and the archetype models produced are only indicative. The findings of this work can be used as the basis to encourage further investigation and uptake of two-level modelling within the Earth system science and geo-spatial domain. Ultimately, the outcomes of this work are to recommend further development and evaluation of the approach, building on the positive results thus far, and the base software artefacts developed to support the approach
    corecore