21 research outputs found

    Adaptive selection of primal constraints for isogeometric BDDC deluxe preconditioners

    Get PDF
    Isogeometric analysis has been introduced as an alternative to finite element methods in order to simplify the integration of computer-aided design (CAD) software and the discretization of variational problems of continuum mechanics. In contrast with the finite element case, the basis functions of isogeometric analysis are often not nodal. As a consequence, there are fat interfaces which can easily lead to an increase in the number of interface variables after a decomposition of the parameter space into subdomains. Building on earlier work on the deluxe version of the BDDC (balancing domain decomposition by constraints) family of domain decomposition algorithms, several adaptive algorithms are developed in this paper for scalar elliptic problems in an effort to decrease the dimension of the global, coarse component of these preconditioners. Numerical experiments provide evidence that this work can be successful, yielding scalable and quasi-optimal adaptive BDDC algorithms for isogeometric discretizations

    Scalable solvers for complex electromagnetics problems

    Get PDF
    In this work, we present scalable balancing domain decomposition by constraints methods for linear systems arising from arbitrary order edge finite element discretizations of multi-material and heterogeneous 3D problems. In order to enforce the continuity across subdomains of the method, we use a partition of the interface objects (edges and faces) into sub-objects determined by the variation of the physical coefficients of the problem. For multi-material problems, a constant coefficient condition is enough to define this sub-partition of the objects. For arbitrarily heterogeneous problems, a relaxed version of the method is defined, where we only require that the maximal contrast of the physical coefficient in each object is smaller than a predefined threshold. Besides, the addition of perturbation terms to the preconditioner is empirically shown to be effective in order to deal with the case where the two coefficients of the model problem jump simultaneously across the interface. The new method, in contrast to existing approaches for problems in curl-conforming spaces does not require spectral information whilst providing robustness with regard to coefficient jumps and heterogeneous materials. A detailed set of numerical experiments, which includes the application of the preconditioner to 3D realistic cases, shows excellent weak scalability properties of the implementation of the proposed algorithms

    Scalable domain decomposition methods for finite element approximations of transient and electromagnetic problems

    Get PDF
    The main object of study of this thesis is the development of scalable and robust solvers based on domain decomposition (DD) methods for the linear systems arising from the finite element (FE) discretization of transient and electromagnetic problems. The thesis commences with a theoretical review of the curl-conforming edge (or N茅d茅lec) FEs of the first kind and a comprehensive description of a general implementation strategy for h- and p- adaptive elements of arbitrary order on tetrahedral and hexahedral non-conforming meshes. Then, a novel balancing domain decomposition by constraints (BDDC) preconditioner that is robust for multi-material and/or heterogeneous problems posed in curl-conforming spaces is presented. The new method, in contrast to existent approaches, is based on the definition of the ingredients of the preconditioner according to the physical coefficients of the problem and does not require spectral information. The result is a robust and highly scalable preconditioner that preserves the simplicity of the original BDDC method. When dealing with transient problems, the time direction offers itself an opportunity for further parallelization. Aiming to design scalable space-time solvers, first, parallel-in-time parallel methods for linear and non-linear ordinary differential equations (ODEs) are proposed, based on (non-linear) Schur complement efficient solvers of a multilevel partition of the time interval. Then, these ideas are combined with DD concepts in order to design a two-level preconditioner as an extension to space-time of the BDDC method. The key ingredients for these new methods are defined such that they preserve the time causality, i.e., information only travels from the past to the future. The proposed schemes are weakly scalable in time and space-time, i.e., one can efficiently exploit increasing computational resources to solve more time steps in (approximately) the same time-to-solution. All the developments presented herein are motivated by the driving application of the thesis, the 3D simulation of the low-frequency electromagnetic response of High Temperature Superconductors (HTS). Throughout the document, an exhaustive set of numerical experiments, which includes the simulation of a realistic 3D HTS problem, is performed in order to validate the suitability and assess the parallel performance of the High Performance Computing (HPC) implementation of the proposed algorithms.L鈥檕bjecte principal d鈥檈studi d鈥檃questa tesi 茅s el desenvolupament de solucionadors escalables i robustos basats en m猫todes de descomposici贸 de dominis (DD) per a sistemes lineals que sorgeixen en la discretitzaci贸 mitjan莽ant elements finits (FE) de problemes transitoris i electromagn猫tics. La tesi comen莽a amb una revisi贸 te貌rica dels FE d鈥檈ix (o de N茅d茅lec) de la primera fam铆lia i una descripci贸 exhaustiva d鈥檜na estrat猫gia d鈥檌mplementaci贸 general per a elements h- i p-adaptatius d鈥檕rdre arbitrari en malles de tetraedres i hexaedres noconformes. Llavors, es presenta un nou precondicionador de descomposici贸 de dominis balancejats per restricci贸 (BDDC) que 茅s robust per a problemes amb m煤ltiples materials i/o heterogenis definits en espais curl-conformes. El nou m猫tode, en contrast amb els enfocaments existents, est脿 basat en la definici贸 dels ingredients del precondicionador segons els coeficients f铆sics del problema i no requereix informaci贸 espectral. El resultat 茅s un precondicionador robust i escalable que preserva la simplicitat del m猫tode original BDDC. Quan tractem amb problemes transitoris, la direcci贸 temporal ofereix ella mateixa l鈥檕portunitat de seguir explotant paral路lelisme. Amb l鈥檕bjectiu de dissenyar precondicionadors en espai-temps, primer, proposem solucionadors paral路lels en temps per equacions diferencials lineals i no-lineals, basats en un solucionador eficient del complement de Schur d鈥檜na partici贸 multinivell de l鈥檌nterval de temps. Seguidament, aquestes idees es combinen amb conceptes de DD amb l鈥檕bjectiu de dissenyar precondicionadors com a extensi贸 a espai-temps dels m猫todes de BDDC. Els ingredients clau d鈥檃quests nous m猫todes es defineixen de tal manera que preserven la causalitat del temps, on la informaci贸 nom茅s viatja de temps passats a temps futurs. Els esquemes proposats s贸n d猫bilment escalables en temps i en espai-temps, 茅s a dir, es poden explotar eficientment recursos computacionals creixents per resoldre m茅s passos de temps en (aproximadament) el mateix temps transcorregut de c脿lcul. Tots els desenvolupaments presentats aqu铆 s贸n motivats pel problema d鈥檃plicaci贸 de la tesi, la simulaci贸 de la resposta electromagn猫tica de baixa freq眉猫ncia dels superconductors d鈥檃lta temperatura (HTS) en 3D. Al llarg del document, es realitza un conjunt exhaustiu d鈥檈xperiments num猫rics, els quals inclouen la simulaci贸 d鈥檜n problema de HTS realista en 3D, per validar la idone茂tat i el rendiment paral路lel de la implementaci贸 per a computaci贸 d鈥檃lt rendiment dels algorismes proposatsPostprint (published version
    corecore