104 research outputs found

    Circuit Testing Based on Fuzzy Sampling with BDD Bases

    Get PDF
    Fuzzy testing of integrated circuits is an established technique. Current approaches generate an approximately uniform random sample from a translation of the circuit to Boolean logic. These approaches have serious scalability issues, which become more pressing with the ever-increasing size of circuits. We propose using a base of binary decision diagrams to sample the translations as a soft computing approach. Uniformity is guaranteed by design and scalability is greatly improved. We test our approach against five other state-of-the-art tools and find our tool to outperform all of them, both in terms of performance and scalability

    Implementing and reasoning about hash-consed data structures in Coq

    Get PDF
    We report on four different approaches to implementing hash-consing in Coq programs. The use cases include execution inside Coq, or execution of the extracted OCaml code. We explore the different trade-offs between faithful use of pristine extracted code, and code that is fine-tuned to make use of OCaml programming constructs not available in Coq. We discuss the possible consequences in terms of performances and guarantees. We use the running example of binary decision diagrams and then demonstrate the generality of our solutions by applying them to other examples of hash-consed data structures

    Knowledge compilation for online decision-making : application to the control of autonomous systems = Compilation de connaissances pour la décision en ligne : application à la conduite de systèmes autonomes

    Get PDF
    La conduite de systèmes autonomes nécessite de prendre des décisions en fonction des observations et des objectifs courants : cela implique des tâches à effectuer en ligne, avec les moyens de calcul embarqués. Cependant, il s'agit généralement de tâches combinatoires, gourmandes en temps de calcul et en espace mémoire. Réaliser ces tâches intégralement en ligne dégrade la réactivité du système ; les réaliser intégralement hors ligne, en anticipant toutes les situations possibles, nuit à son embarquabilité. Les techniques de compilation de connaissances sont susceptibles d'apporter un compromis, en déportant au maximum l'effort de calcul avant la mise en situation du système. Ces techniques consistent à traduire un problème dans un certain langage, fournissant une forme compilée de ce problème, dont la résolution est facile et la taille aussi compacte que possible. La traduction peut être très longue, mais n'est effectuée qu'une seule fois, hors ligne. Il existe de nombreux langages-cible de compilation, notamment le langage des diagrammes de décision binaires (BDDs), qui ont été utilisés avec succès dans divers domaines (model-checking, configuration, planification). L'objectif de la thèse était d'étudier l'application de la compilation de connaissances à la conduite de systèmes autonomes. Nous nous sommes intéressés à des problèmes réels de planification, qui impliquent souvent des variables continues ou à grand domaine énuméré (temps ou mémoire par exemple). Nous avons orienté notre travail vers la recherche et l'étude de langages-cible de compilation assez expressifs pour permettre de représenter de tels problèmes.Controlling autonomous systems requires to make decisions depending on current observations and objectives. This involves some tasks that must be executed online-with the embedded computational power only. However, these tasks are generally combinatory; their computation is long and requires a lot of memory space. Entirely executing them online thus compromises the system's reactivity. But entirely executing them offline, by anticipating every possible situation, can lead to a result too large to be embedded. A tradeoff can be provided by knowledge compilation techniques, which shift as much as possible of the computational effort before the system's launching. These techniques consists in a translation of a problem into some language, obtaining a compiled form of the problem, which is both easy to solve and as compact as possible. The translation step can be very long, but it is only executed once, and offline. There are numerous target compilation languages, among which the language of binary decision diagrams (BDDs), which have been successfully used in various domains of artificial intelligence, such as model-checking, configuration, or planning. The objective of the thesis was to study how knowledge compilation could be applied to the control of autonomous systems. We focused on realistic planning problems, which often involve variables with continuous domains or large enumerated domains (such as time or memory space). We oriented our work towards the search for target compilation languages expressive enough to represent such problems

    JINC - A Multi-Threaded Library for Higher-Order Weighted Decision Diagram Manipulation

    Get PDF
    Ordered Binary Decision Diagrams (OBDDs) have been proven to be an efficient data structure for symbolic algorithms. The efficiency of the symbolic methods de- pends on the underlying OBDD library. Available OBDD libraries are based on the standard concepts and so far only differ in implementation details. This thesis introduces new techniques to increase run-time and space-efficiency of an OBDD library. This thesis introduces the framework of Higher-Order Weighted Decision Diagrams (HOWDDs) to combine the similarities of different OBDD variants. This frame- work pioneers the basis for the new variant Toggling Algebraic Decision Diagrams (TADDs) which has been shown to be a space-efficient HOWDD variant for sym- bolic matrix representation. The concept of HOWDDs has been use to implement the OBDD library JINC. This thesis also analyzes the usage of multi-threading techniques to speed-up OBDD manipulations. A new reordering framework ap- plies the advantages of multi-threading techniques to reordering algorithms. This approach uses an abstraction layer so that the original reordering algorithms are not touched. The challenge that arise from a straight forward algorithm is that the computed-tables and the garbage collection are not as efficient as in a single- threaded environment. We resolve this problem by developing a new multi-operand APPLY algorithm that eliminates the creation of temporary nodes which could occur during computation and thus reduces the need for caching or garbage collection. The HOWDD framework leads to an efficient library design which has been shown to be more efficient than the established OBDD library CUDD. The HOWDD instance TADD reduces the needed number of nodes by factor two compared to ordinary ADDs. The new multi-threading approaches are more efficient than single-threading approaches by several factors. In the case of the new reordering framework the speed- up almost equals the theoretical optimal speed-up. The novel multi-operand APPLY algorithm reduces the memory usage for the n-queens problem by factor 50 which enables the calculation of bigger problem instances compared to the traditional APPLY approach. The new approaches improve the performance and reduce the memory footprint. This leads to the conclusion that applications should be reviewed whether they could benefit from the new multi-threading multi-operand approaches introduced and discussed in this thesis

    SAT-Solving in Practice, with a Tutorial Example from Supervisory Control

    Get PDF
    Satisfiability solving, the problem of deciding whether the variables of a propositional formula can be assigned in such a way that the formula evaluates to true, is one of the classic problems in computer science. It is of theoretical interest because it is the canonical NP-complete problem. It is of practical interest because modern SAT-solvers can be used to solve many important and practical problems. In this tutorial paper, we show briefly how such SAT-solvers are implemented, and point to some typical applications of them. Our aim is to provide sufficient information (much of it through the reference list) to kick-start researchers from new fields wishing to apply SAT-solvers to their problems. Supervisory control theory originated within the control community and is a framework for reasoning about a plant to be controlled and a specification that the closed-loop system must fulfil. This paper aims to bridge the gap between the computer science community and the control community by illustrating how SAT-based techniques can be used to solve some supervisory control related problems

    Implementation and Applications of Ad Hoc Constraints

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore