25 research outputs found

    Research in the Aloha system

    Get PDF
    The Aloha system was studied and developed and extended to advanced forms of computer communications networks. Theoretical and simulation studies of Aloha type radio channels for use in packet switched communications networks were performed. Improved versions of the Aloha communications techniques and their extensions were tested experimentally. A packet radio repeater suitable for use with the Aloha system operational network was developed. General studies of the organization of multiprocessor systems centered on the development of the BCC 500 computer were concluded

    Advances in Rule-based Modeling: Compartments, Energy, and Hybrid Simulation, with Application to Sepsis and Cell Signaling

    Get PDF
    Biological systems are commonly modeled as reaction networks, which describe the system at the resolution of biochemical species. Cellular systems, however, are governed by events at a finer scale: local interactions among macromolecular domains. The multi-domain structure of macromolecules, combined with the local nature of interactions, can lead to a combinatorial explosion that pushes reaction network methods to their limits. As an alternative, rule-based models (RBMs) describe the domain-based structure and local interactions found in biological systems. Molecular complexes are represented by graphs: functional domains as vertices, macromolecules as groupings of vertices, and molecular bonding as edges. Reaction rules, which describe classes of reactions, govern local modifications to molecular graphs, such as binding, post-translational modification, and degradation. RBMs can be transformed to equivalent reaction networks and simulated by differential or stochastic methods, or simulated directly with a network-free approach that avoids the problem of combinatorial complexity. Although RBMs and network-free methods resolve many problems in systems modeling, challenges remain. I address three challenges here: (i) managing model complexity due to cooperative interactions, (ii) representing biochemical systems in the compartmental setting of cells and organisms, and (iii) reducing the memory burden of large-scale network-free simulations. First, I present a general theory of energy-based modeling within the BioNetGen framework. Free energy is computed under a pattern-based formalism, and contextual variations within reaction classes are enumerated automatically. Next, I extend the BioNetGen language to permit description of compartmentalized biochemical systems, with treatment of volumes, surfaces and transport. Finally, a hybrid particle/population method is developed to reduce memory requirements of network-free simulations. All methods are implemented and available as part of BioNetGen. The remainder of this work presents an application to sepsis and inflammation. A multi-organ model of peritoneal infection and systemic inflammation is constructed and calibrated to experiment. Extra-corporeal blood purification, a potential treatment for sepsis, is explored in silico. Model simulations demonstrate that removal of blood cytokines and chemokines is a sufficient mechanism for improved survival in sepsis. However, differences between model predictions and the latest experimental data suggest directions for further exploration

    Desarrollo de un nuevo sistema de hipertermia de microondas para aplicaciones

    Get PDF
    [ENG]Microwave technology is now widely used in a variety of medical applications such as cancer treatment and diagnostics. This project describes the structure of a novel hyperthermia system for biomedical research. The software Ansoft HFSS was used to design a rectangular waveguide applicator. A closed-loop is presented in order to control the output power of the system by the temperature measured on the sample. Initial results from experimental testing are presented. In these results, it is shown that the water temperature can be increased from 21ºC to 40ºC in 12 minutes. Therefore, it has been tested that the system works properly. The next step would be to apply the system to melanoma cancer cells. [SPA]Ya existen tecnologías que implican el uso de microondas en una gran variedad de aplicaciones m édicas tales como el diagnóstico y el tratamiento del cáncer. Este proyecto describe la estructura de un nuevo sistema de hipertermia para ser usado en todo tipo de investigaciones biom édicas. El software Ansoft HFSS ha sido usado para diseñar una guía de onda rectangular que ser á el componente final al que se aplicar á nuestro sistema. Además, se dispone de un bucle cerrado en el propio sistema para poder controlar la potencia de salida en función de la temperatura medida en la muestra. Los resultados iniciales del experimento se han presentado en este documento. En estos resultados, se muestra que la temperatura del agua puede ser incrementada desde 21ºC hasta 40ºC en unos 12 minutos. Por lo tanto, se ha comprobado que el sistema funciona de forma adecuada. El siguiente paso ser a aplicar el sistema directamente sobre c elulas cancer genas.Escuela Técnica Superior de Ingeniería de TelecomunicaciónHeriot Watt UniversityUniversidad Politécnica de Cartagen

    NASA Tech Briefs Index, 1976

    Get PDF
    Abstracts of new technology derived from the research and development activities of the National Aeronautics and Space Administration are presented. Emphasis is placed on information considered likely to be transferrable across industrial, regional, or disciplinary lines. Subject matter covered includes: electronic components and circuits; electronic systems; physical sciences; materials; life sciences; mechanics; machinery; fabrication technology; and mathematics and information sciences

    NASA Tech Briefs, Fall 1976

    Get PDF
    Topics include: NASA TU Services: Technology Utilization services that can assist you in learning about and applying NASA technology; New Product Ideas: A summary of seloc.ted Innovations of value to manufacturers for the development of new products; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Life Sciences; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences

    Automated Evaluation of One-Loop Six-Point Processes for the LHC

    Get PDF
    In the very near future the first data from LHC will be available. The searches for the Higgs boson and for new physics will require precise predictions both for the signal and the background processes. Tree level calculations typically suffer from large renormalization scale uncertainties. I present an efficient implementation of an algorithm for the automated, Feynman diagram based calculation of one-loop corrections to processes with many external particles. This algorithm has been successfully applied to compute the virtual corrections of the process uuˉbbˉbbˉu\bar{u}\to b\bar{b}b\bar{b} in massless QCD and can easily be adapted for other processes which are required for the LHC.Comment: 232 pages, PhD thesi

    Dual energy scanning beam X -radiography

    Get PDF
    Dual energy X-radiography is a method first developed in the mid-1970\u27s by which one uses the information contained in the energy spectrum of the transmitted X-ray flux through an object. With this information one can distinguish the types of materials present in a radiograph and thus allow a computer to subtract them from the image enhancing the contrast of the remaining materials. Using this method, one can see details, which would have been hidden by overlying structures of other materials such as seen in radiographs of parts, made up of mixtures of metals and composites. There is also great interest in this technique for medical imaging of the chest where images of the organs are significantly improved by subtracting the bones. However, even with the enhanced capabilities realized with this technique, the majority of X-radiography systems only measures the bulk transmitted X-ray intensity and ignores the information contained in the energy spectrum. This is due to the added expense, time requirements, and registration problems incurred using standard radiographic methods to obtain dual energy radiographs. This dissertation describes a novel method which overcomes these problems and allows one to perform inexpensive, near real time, single shot dual energy X-radiography. The work of this thesis resulted in US patent #5,742,660

    Component-based control system development for agile manufacturing machine systems

    Get PDF
    It is now a common sense that manufactures including machine suppliers and system integrators of the 21 st century will need to compete on global marketplaces, which are frequently shifting and fragmenting, with new technologies continuously emerging. Future production machines and manufacturing systems need to offer the "agility" required in providing responsiveness to product changes and the ability to reconfigure. The primary aim for this research is to advance studies in machine control system design, in the context of the European project VIR-ENG - "Integrated Design, Simulation and Distributed Control of Agile Modular Machinery"
    corecore