308 research outputs found

    Measurement signal quality assessment on all available and new signals of multi-GNSS (GPS, GLONASS, Galileo, BDS, and QZSS) with real data

    Get PDF
    Global Navigation Satellite Systems (GNSS) Carrier Phase (CP)-based high-precision positioning techniques have been widely used in geodesy, attitude determination, engineering survey and agricultural applications. With the modernisation of GNSS, multi-constellation and multi-frequency data processing is one of the foci of current GNSS research. The GNSS development authorities have better designs for the new signals, which are aimed for fast acquisition for civil users, less susceptible to interference and multipath, and having lower measurement noise. However, how good are the new signals in practice? The aim of this paper is to provide an early assessment of the newly available signals as well as assessment of the other currently available signals. The signal quality of the multi-GNSS (GPS, GLONASS, Galileo, BDS and QZSS) is assessed by looking at their zero-baseline Double Difference (DD) CP residuals. The impacts of multi-GNSS multi-frequency signals on single-epoch positioning are investigated in terms of accuracy, precision and fixed solution availability with known short baselines

    An analysis of multi-GNSS observations tracked by recent Android smartphones and smartphone-only relative positioning results

    Get PDF
    In this study we assess the quality of multi-GNSS observations of recent Android smartphones. The results reveal a significant drop of smartphone carrier-to-noise density ratio (C/N0) with respect to geodetic receivers, and discernible differences among constellations and frequency bands. We show that the higher the elevation of the satellite, the larger discrepancy in C/N0 between the geodetic receivers and smartphones. Thus we show that a C/N0 weighting scheme may be superior to the elevation dependent one usually adopted for GNSS observations. We also discover that smartphone code pseudoranges are noisier by about one order of magnitude as compared to geodetic receivers, and that the code signals on L5 and E5a outperform those on L1 and E1, respectively. It is shown that smartphone phase observations are contaminated by the effects that can destroy the integer property and time-constancy of the ambiguities. There are long term drifts detected for GPS L5, Galileo E1, E5a and BDS B1 phase observations of Huawei P30. We highlight competitive phase noise characteristics for the Xiaomi Mi 8 when compared to the geodetic receivers. We also reveal a poor quality of other than GPS L1 phase signals for the Huawei P30 smartphones related to the unexpected drifts of the observations. Finally, the positioning experiment proves that it is feasible to obtain a precise cm-level solution of a smartphone to smartphone relative positioning with fixed integer ambiguities

    gLAB upgrade with BeiDou navigation system signals

    Get PDF
    The gLAB tool suit is an educational and professional multipurpose GNSS data processing software. It has been developed by gAGE/UPC under a contract of the European Space Agency (ESA). The current version of gLAB allows full GPS data processing with High Accuracy Positioning capability (at the centimetre level), but only a very limited data handling of Galileo and GLONASS. The Chinese Global Satellite Navigation System Beidou was not included in the initial requirements of ESA. The target of this project is to upgrade gLAB with the necessary functions to allow this software to compute user solutions with the Beidou signals

    Position, velocity and time measurement with multiple constellation data from GPS, GALILEO, GLONASS and BEIDOU

    Get PDF
    Il presente lavoro si propone di illustrare la teoria, il metodo e le modalità del calcolo della PVT, ovvero della posizione, della velocità e del sincronismo temporale, di un utente sulla Terra o di un satellite in orbita bassa (dotato di ricevitore multiGNSS), utilizzando un software integrato che sfrutti tutti i segnali provenienti da tutte le costellazioni a copertura globale in quel momento visibili. Nel caso presente si sono utilizzati i segnali da GPS, Galileo, GLONASS e BeiDou, rilevati grazie ad un ricevitore fornito dall'Università di Padova (STONEX S580), sia per la determinazione della posizione, sia per implementare il calcolo della velocità attraverso l'effetto Doppler. Questo lavoro, in futuro, potrebbe portare a contributi nello sviluppo di tecnologie innovative in molti settori, quali: navigazione autonoma e trasporti, difesa e aerospazio, agricoltura e molti altri.This work intends to outline the theory and the methods for the computation of position, velocity and time (PVT) of a user on the surface of the Earth or of a LEO satellite (Low Earth Orbit). An integrated software written in MATLAB and PERL has been used; it processes all the signals transmitted by all the constellations visible in that precise moment and in that precise place. The software's core uses the Weighted Least Squares algorithm, which permits the efficient computation of position, speed, timing and tropospheric delay in a few iterations. In this thesis, signals from GPS, Galileo, BeiDou and GLONASS have been used, specifically for the computation of the speed, which is calculated from the Doppler Effect. These signals were detected through a receiver STONEX Cube-a S580 provided by the University of Padua. A good precision in determination of both positioning and speed has been achieved and also the PNT of a LEO satellite (Sentinel 3A) has been determined successfully, using data also to study J2 perturbations on the orbit. The principal aim of this thesis is to provide an efficient and precise software able to process pseudorange and Doppler shift multi-constellation data, to enhance, in its future evolutions, the precise positioning of a receiver on Earth's surface and in orbit, with interesting applications in many different fields such as defence, transportations and automotive, attitude determination in space and many others

    BDS GNSS for Earth Observation

    Get PDF
    For millennia, human communities have wondered about the possibility of observing phenomena in their surroundings, and in particular those affecting the Earth on which they live. More generally, it can be conceptually defined as Earth observation (EO) and is the collection of information about the biological, chemical and physical systems of planet Earth. It can be undertaken through sensors in direct contact with the ground or airborne platforms (such as weather balloons and stations) or remote-sensing technologies. However, the definition of EO has only become significant in the last 50 years, since it has been possible to send artificial satellites out of Earth’s orbit. Referring strictly to civil applications, satellites of this type were initially designed to provide satellite images; later, their purpose expanded to include the study of information on land characteristics, growing vegetation, crops, and environmental pollution. The data collected are used for several purposes, including the identification of natural resources and the production of accurate cartography. Satellite observations can cover the land, the atmosphere, and the oceans. Remote-sensing satellites may be equipped with passive instrumentation such as infrared or cameras for imaging the visible or active instrumentation such as radar. Generally, such satellites are non-geostationary satellites, i.e., they move at a certain speed along orbits inclined with respect to the Earth’s equatorial plane, often in polar orbit, at low or medium altitude, Low Earth Orbit (LEO) and Medium Earth Orbit (MEO), thus covering the entire Earth’s surface in a certain scan time (properly called ’temporal resolution’), i.e., in a certain number of orbits around the Earth. The first remote-sensing satellites were the American NASA/USGS Landsat Program; subsequently, the European: ENVISAT (ENVironmental SATellite), ERS (European Remote-Sensing satellite), RapidEye, the French SPOT (Satellite Pour l’Observation de laTerre), and the Canadian RADARSAT satellites were launched. The IKONOS, QuickBird, and GeoEye-1 satellites were dedicated to cartography. The WorldView-1 and WorldView-2 satellites and the COSMO-SkyMed system are more recent. The latest generation are the low payloads called Small Satellites, e.g., the Chinese BuFeng-1 and Fengyun-3 series. Also, Global Navigation Satellite Systems (GNSSs) have captured the attention of researchers worldwide for a multitude of Earth monitoring and exploration applications. On the other hand, over the past 40 years, GNSSs have become an essential part of many human activities. As is widely noted, there are currently four fully operational GNSSs; two of these were developed for military purposes (American NAVstar GPS and Russian GLONASS), whilst two others were developed for civil purposes such as the Chinese BeiDou satellite navigation system (BDS) and the European Galileo. In addition, many other regional GNSSs, such as the South Korean Regional Positioning System (KPS), the Japanese quasi-zenital satellite system (QZSS), and the Indian Regional Navigation Satellite System (IRNSS/NavIC), will become available in the next few years, which will have enormous potential for scientific applications and geomatics professionals. In addition to their traditional role of providing global positioning, navigation, and timing (PNT) information, GNSS navigation signals are now being used in new and innovative ways. Across the globe, new fields of scientific study are opening up to examine how signals can provide information about the characteristics of the atmosphere and even the surfaces from which they are reflected before being collected by a receiver. EO researchers monitor global environmental systems using in situ and remote monitoring tools. Their findings provide tools to support decision makers in various areas of interest, from security to the natural environment. GNSS signals are considered an important new source of information because they are a free, real-time, and globally available resource for the EO community

    Methods for Improving Performance in Consumer Grade GNSS Receivers

    Get PDF
    Viimeisten kolmen vuosikymmenen aikana satelliittinavigointi on kehittynyt ammatti ja sotilaskäyttäjien tekniikasta kaikkien saatavilla olevaksi tekniikaksi. Varsinkin viimeisen 15 vuoden aikana, kun vastaanottimet alkoivat pienentyä ja halpenivat, on lisääntynyt määrä yrityksiä, jotka toimittavat GPS-laitteita satoihin erilaisiin sovelluksiin. Kaikille moderneille tekniikoille on myös tyypillistä, että tutkimukseen ja siihen liittyvään vastaanottimien kehittämiseen on käytetty valtavasti rahaa, mikä on johtanut huomattavaan parantumiseen vastaanottimen suorituskyvyssä. GPS-vastaanottimien kehitystyön lisäksi uusien maailmanlaajuisten satelliittinavigointijärjestelmien, kuten venäläisen GLONASS, kiinalaisen BeiDou- ja eurooppalaisen Galileo-järjestelmien käyttöönotto tarjoaa entistä enemmän mahdollisuuksia suorituskyvyn parantamiseen. Sekä GPS että nämä uudet järjestelmät ovat myös ottaneet käyttöön uudentyyppisiä signaalirakenteita, jotka voivat tarjota parempilaatuisia havaintoja ja siten parantaa kaikkien vastaanottimien suorituskykyä. Lopuksi menetelmät, kuten PPP ja RTK, jotka aiemmin olivat varattu ammattikäyttäjille, ovat tulleet kuluttajamarkkinoille mahdollistaen ennennäkemättömän suorituskyvyn jokaiselle satelliittinavigointivastaanottimien käyttäjälle. Tässä opinnäytetyössä arvioidaan tämän kehityksen vaikutusta sekä suorituskykyyn että vastaanottimen arkkitehtuuriin. Työssä esitellään yksityiskohtaisesti FGI:ssä kehitetyn ohjelmistopohjaisen vastaanottimen, FGI-GSRx:n. Tämän vastaanottimen avulla on työssä arvioitu miten sekä uudet konstellaatiot että uudet nykyaikaiset signaalit ja niitten seurantamenetelmät vaikuttavat suorituskykyyn ja vastaanotin arkkitehtuuriin. Tämän lisäksi on arvioitu PPP- ja RTK-tarkkuuspaikannusmenetelmien vaikutus FinnRefCORS-verkkoa käyttäen useiden erityyppisten vastaanottimien kanssa, mukaan lukien kuluttajalaatuiset vastaanottimet. Tulokset osoittavat, että enemmän konstellaatioita ja signaaleja käytettäessä paikannusratkaisun tarkkuus paranee 3 metristä 1,4 metriin hyvissä olosuhteissa ja yli 10-kertaiseksi tiheästi rakennetuissa kaupungeissa, jossa käytettävissä olevien signaalien määrä kasvaa kertoimella 2 käytettäessä kolmea konstellaatiota. Uusia moderneja modulaatiotekniikoita, kuten BOC-modulaatiota, käytettäessä tulokset osoittavat Galileo-ratkaisun tarkkuuden paranevan lähes 25%:lla ja esitelty uusi signaalinkäsittelymenetelmä lisää tällaisen tarkkuuden saatavuutta 50%:sta lähes 100%:iin. Lopuksi tarkkuuspaikannusmenetelmien tulokset osoittavat, että 15 cm:n tarkkuus on saavutettavissa, mikä on merkittävä parannus verrattuna 1,4 metrin tarkkuuteen. Näiden parannusten saavuttamiseksi on olennaista, että itse vastaanotin on mukautettu hyödyntämään näitä uusia signaaleja ja konstellaatioita. Tämä tarkoittaa, että nykyaikaisten kuluttajamarkkinoiden vastaanottimien suunnittelu on haastavaa ja monissa tapauksissa ohjelmistopohjainen vastaanotin olisi parempi ja halvempi valinta kuin uusien mikropiirien kehittäminen.For the last three decades, satellite navigation has evolved from being a technology for professional and military users to a technology available for everyone. Especially during the last 15 years, since the receivers started getting smaller and cheaper, there has been an increasing number of companies delivering Global Positioning System (GPS) enabled devices for hundreds of different kind of applications. Typical for any modern technology, there has also been an enormous amount of money spent on research and accompanied receiver development resulting in an immense increase in receiver performance. In addition to the development efforts on GPS receivers the introduction of new global navigation satellite systems such as the Russian Globalnaja Navigatsionnaja Sputnikovaja Sistema (GLONASS), the Chinese BeiDou, and the European Galileo systems offers even more opportunities for improved performance. Both GPS and these new systems have also introduced new types of signal structures that can provide better quality observations and even further improve the performance of all receivers. Finally, methods like Precise Point Positioning (PPP) and Real Time Kinematic (RTK) that earlier were reserved for professional users have entered into the consumer market enabling never before seen performance for every user of satellite navigation receivers. This thesis will assess the impact of this development on both performance as well as on receiver architecture. The design of the software defined receiver developed at FGI, the FGI-GSRx, is presented in detail in this thesis. This receiver has then been used to assess the impact of using multiple constellations as well as new novel signal processing methods for modern signals. To evaluate the impact of PPP and RTK methods the FinnRef Continuously Operating Reference Station (CORS) network has been used together with several different types of receivers including consumer grade off the shelf receivers. The results show that when using more constellations and signals the accuracy of the positioning solution improves from3 meters to 1.4 meters in open sky conditions and by more than a factor 10 in severe urban canyons. For severe urban canyons the available also increases by a factor 2 when using three constellations. When using new modern modulation techniques like high order BOC results show an accuracy improvement for a Galileo solution of almost 25 % and the presented new signal processing method increase the availability of such an accuracy from 50 % to almost 100 %. Finally, results from precise point positioning methods show that an accuracy of 15 cm is achievable, which is a significant improvement compared to an accuracy of 1.4 m for a standalone multi constellation solution. To achieve these improvements, it is essential that the receiver itself is adapted to make use of these new signals and constellations. This means that the design of modern consumer market receivers is challenging and in many cases a software define receiver would be a better and cheaper choice than developing new Application Specific Integrated Circuit (ASIC)’s

    Observation Quality Assessment and Performance of GNSS Standalone Positioning with Code Pseudoranges of Dual-Frequency Android Smartphones

    Get PDF
    The new generation of Android smartphones is equipped with GNSS chips capable of tracking multi-frequency and multi-constellation data. In this work, we evaluate the positioning performance and analyze the quality of observations collected by three recent smartphones, namely Xiaomi Mi 8, Xiaomi Mi 9, and Huawei P30 pro that take advantage of such chips. The analysis of the GNSS observation quality implies that the commonly employed elevation-dependent function is not optimal for smartphone GNSS observation weighting and suggests an application of the C/N0-dependent one. Regarding smartphone code signals on L5 and E5a frequency bands, we found that they are characterized with noticeably lower noise as compared to E1 and L1 ones. The single point positioning results confirm an improvement in the performance when the weights are a function of the C/N0-rather than those dependent on the satellite elevation and that a smartphone positioning with E5a code observations significantly outperforms that with E1 signals. The latter is expressed by a drop of the horizontal RMS from 8.44 m to 3.17 m for Galileo E1 and E5a solutions of Xiaomi Mi 9 P30, respectively. The best positioning accuracy of multi-GNSS single-frequency (L1/E1/B1/G1) solution was obtained by Huawei P30 with a horizontal RMS of 3.24 m. Xiaomi Mi 8 and Xiaomi Mi 9 show a horizontal RMS error of 4.14 m and 4.90 m, respectively

    Compass/Beidou-2 Studies: Acquisition Of Real-field Satellite Signals

    Get PDF
    With the ever-increasing interests and demands of navigation and positioning services, Global Navigation Satellite Systems (GNSS) has been drawing more and more attention. Each every country or continent is trying to establish their own GNSS system. Compass, also known as Beidou-2, which is developed by China is one of the most popular GNSS in Asian continent. Compass project was started in 2000 and until now, there has been rather few public information regarding Compass. In order to test and analyse Compass, it is necessary to obtain the existing information about Compass. In addition, acquisition and navigation are the main parts of Compass system so that to acquire the signal and extraction the navigation message in a fast and accurate way is very important. In this thesis, the Compass signals and receivers as well as three important segments of Compass systems are discussed. In addition, possible methods to achieve acquisition of Compass signals are illustrated. Meanwhile, a simulator is carried out to simulate the acquisition of Compass real-time field signals. The simulation results show that the parallel code phase search algorithm can be used to acquire Compass signals
    corecore