759 research outputs found

    Towards ultra-high resolution 3D reconstruction of a whole rat brain from 3D-PLI data

    Full text link
    3D reconstruction of the fiber connectivity of the rat brain at microscopic scale enables gaining detailed insight about the complex structural organization of the brain. We introduce a new method for registration and 3D reconstruction of high- and ultra-high resolution (64 μ\mum and 1.3 μ\mum pixel size) histological images of a Wistar rat brain acquired by 3D polarized light imaging (3D-PLI). Our method exploits multi-scale and multi-modal 3D-PLI data up to cellular resolution. We propose a new feature transform-based similarity measure and a weighted regularization scheme for accurate and robust non-rigid registration. To transform the 1.3 μ\mum ultra-high resolution data to the reference blockface images a feature-based registration method followed by a non-rigid registration is proposed. Our approach has been successfully applied to 278 histological sections of a rat brain and the performance has been quantitatively evaluated using manually placed landmarks by an expert.Comment: 9 pages, Accepted at 2nd International Workshop on Connectomics in NeuroImaging (CNI), MICCAI'201

    Feature Tracking Cardiac Magnetic Resonance via Deep Learning and Spline Optimization

    Full text link
    Feature tracking Cardiac Magnetic Resonance (CMR) has recently emerged as an area of interest for quantification of regional cardiac function from balanced, steady state free precession (SSFP) cine sequences. However, currently available techniques lack full automation, limiting reproducibility. We propose a fully automated technique whereby a CMR image sequence is first segmented with a deep, fully convolutional neural network (CNN) architecture, and quadratic basis splines are fitted simultaneously across all cardiac frames using least squares optimization. Experiments are performed using data from 42 patients with hypertrophic cardiomyopathy (HCM) and 21 healthy control subjects. In terms of segmentation, we compared state-of-the-art CNN frameworks, U-Net and dilated convolution architectures, with and without temporal context, using cross validation with three folds. Performance relative to expert manual segmentation was similar across all networks: pixel accuracy was ~97%, intersection-over-union (IoU) across all classes was ~87%, and IoU across foreground classes only was ~85%. Endocardial left ventricular circumferential strain calculated from the proposed pipeline was significantly different in control and disease subjects (-25.3% vs -29.1%, p = 0.006), in agreement with the current clinical literature.Comment: Accepted to Functional Imaging and Modeling of the Heart (FIMH) 201

    2D Reconstruction of Small Intestine's Interior Wall

    Full text link
    Examining and interpreting of a large number of wireless endoscopic images from the gastrointestinal tract is a tiresome task for physicians. A practical solution is to automatically construct a two dimensional representation of the gastrointestinal tract for easy inspection. However, little has been done on wireless endoscopic image stitching, let alone systematic investigation. The proposed new wireless endoscopic image stitching method consists of two main steps to improve the accuracy and efficiency of image registration. First, the keypoints are extracted by Principle Component Analysis and Scale Invariant Feature Transform (PCA-SIFT) algorithm and refined with Maximum Likelihood Estimation SAmple Consensus (MLESAC) outlier removal to find the most reliable keypoints. Second, the optimal transformation parameters obtained from first step are fed to the Normalised Mutual Information (NMI) algorithm as an initial solution. With modified Marquardt-Levenberg search strategy in a multiscale framework, the NMI can find the optimal transformation parameters in the shortest time. The proposed methodology has been tested on two different datasets - one with real wireless endoscopic images and another with images obtained from Micro-Ball (a new wireless cubic endoscopy system with six image sensors). The results have demonstrated the accuracy and robustness of the proposed methodology both visually and quantitatively.Comment: Journal draf

    Mutual information for Lucas-Kanade tracking (MILK): An inverse compositional formulation

    Get PDF

    Fast interpolation operations in non-rigid image registration

    Full text link
    Much literature on image registration1–3 has worked with purely geometric image deformation models. For such models, interpolation/resampling operations are often the computationally intensive steps when iteratively minimizing the deformation cost function. This article discusses some techniques for efficiently implementing and accelerating these operations. To simplify presentation, we discuss our ideas in the context of 2D imaging. However, the concepts readily generalize to 3D. Our central technique is a table-lookup scheme that makes somewhat liberal use of RAM, but should not strain the resources of modern processors if certain design parameters are appropriately selected. The technique works by preinterpolating and tabulating the grid values of the reference image onto a finer grid along one of the axes of the image. The lookup table can be rapidly constructed using FFTs. Our results show that this technique reduces iterative computation by an order of magnitude. When a minimization algorithm employing coordinate block alternation is used, one can obtain still faster computation by storing certain intermediate quantities as state variables. We refer to this technique as state variable hold-over. When combined with table-lookup, state variable hold-over reduces CPU time by about a factor two, as compared to table-lookup alone.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85925/1/Fessler207.pd

    Quantifying Uncertainties for Prostate Image-Guided Radiotherapy: A 3D Organ Reconstruction and Registration Method

    Get PDF
    The purpose of this paper is to present a method for volumetric reconstruction, registration and margin assignation applicable to both conventional CT scans and on board CT imaging. This method does not depend on the shape of the organs, the bony anatomy or the use of markers, and we apply it to prostate and bladder. 3D reconstructions are performed by means of spline surfaces and the 3D reconstructed surfaces are registered to a planning surface, using a multidimensional alignment from the Euclidean distance transform and the Levenberg-Marquardt optimization algorithm. Once the reconstructed surfaces are registered, we define a mean surface and obtain the corresponding variances from this mean surface. The method works properly and demonstrates that once translations are insulated by registration, residual uncertainties can be handled with the margin assigned for delineation variation and organ deformatio

    Investigation of Intensity Correction in the Context of Image Registration

    Get PDF
    An image registration algorithm with intensity correction was developed. A particular goal was to apply intensity correction instead of using multimodal similarity measures. The algorithm utilises common Levenberg-Marquardt optimisation. The author has chosen two dimensional affine and one dimensional B-Spline model as spatial transformation, as well as intensity correction models specific to CT images. They are global non-linear mapping and smooth local affine correction. The algorithm was tested experimentally using a wide class of simulated images and a limited class of medical images. Affine registration works properly even for deformations which exceed typical deformation encountered in medical practice. B-Spline registration works properly for small deformations and requires further development to increase capture range. The idea of separating intensity correction mapping from similarity measure is shown to have advantages. Choosing intensity correction model can make the registration algorithm specific to the image class of interest

    3D tooth surface reconstruction

    Get PDF
    Master'sMASTER OF ENGINEERIN
    corecore