2,641 research outputs found

    Local interpolation schemes for landmark-based image registration: a comparison

    Full text link
    In this paper we focus, from a mathematical point of view, on properties and performances of some local interpolation schemes for landmark-based image registration. Precisely, we consider modified Shepard's interpolants, Wendland's functions, and Lobachevsky splines. They are quite unlike each other, but all of them are compactly supported and enjoy interesting theoretical and computational properties. In particular, we point out some unusual forms of the considered functions. Finally, detailed numerical comparisons are given, considering also Gaussians and thin plate splines, which are really globally supported but widely used in applications

    A Multivariate Fast Discrete Walsh Transform with an Application to Function Interpolation

    Full text link
    For high dimensional problems, such as approximation and integration, one cannot afford to sample on a grid because of the curse of dimensionality. An attractive alternative is to sample on a low discrepancy set, such as an integration lattice or a digital net. This article introduces a multivariate fast discrete Walsh transform for data sampled on a digital net that requires only O(NlogN)O(N \log N) operations, where NN is the number of data points. This algorithm and its inverse are digital analogs of multivariate fast Fourier transforms. This fast discrete Walsh transform and its inverse may be used to approximate the Walsh coefficients of a function and then construct a spline interpolant of the function. This interpolant may then be used to estimate the function's effective dimension, an important concept in the theory of numerical multivariate integration. Numerical results for various functions are presented
    corecore